boost/math/tools/rational.hpp
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_TOOLS_RATIONAL_HPP #define BOOST_MATH_TOOLS_RATIONAL_HPP #include <boost/array.hpp> #include <boost/math/tools/config.hpp> #include <boost/mpl/int.hpp> #if BOOST_MATH_POLY_METHOD == 1 # define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner1_, BOOST_MATH_MAX_POLY_ORDER).hpp> # include BOOST_HEADER() # undef BOOST_HEADER #elif BOOST_MATH_POLY_METHOD == 2 # define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner2_, BOOST_MATH_MAX_POLY_ORDER).hpp> # include BOOST_HEADER() # undef BOOST_HEADER #elif BOOST_MATH_POLY_METHOD == 3 # define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner3_, BOOST_MATH_MAX_POLY_ORDER).hpp> # include BOOST_HEADER() # undef BOOST_HEADER #endif #if BOOST_MATH_RATIONAL_METHOD == 1 # define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner1_, BOOST_MATH_MAX_POLY_ORDER).hpp> # include BOOST_HEADER() # undef BOOST_HEADER #elif BOOST_MATH_RATIONAL_METHOD == 2 # define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner2_, BOOST_MATH_MAX_POLY_ORDER).hpp> # include BOOST_HEADER() # undef BOOST_HEADER #elif BOOST_MATH_RATIONAL_METHOD == 3 # define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner3_, BOOST_MATH_MAX_POLY_ORDER).hpp> # include BOOST_HEADER() # undef BOOST_HEADER #endif namespace boost{ namespace math{ namespace tools{ // // Forward declaration to keep two phase lookup happy: // template <class T, class U> U evaluate_polynomial(const T* poly, U const& z, std::size_t count); namespace detail{ template <class T, class V, class Tag> inline V evaluate_polynomial_c_imp(const T* a, const V& val, const Tag*) { return evaluate_polynomial(a, val, Tag::value); } } // namespace detail // // Polynomial evaluation with runtime size. // This requires a for-loop which may be more expensive than // the loop expanded versions above: // template <class T, class U> inline U evaluate_polynomial(const T* poly, U const& z, std::size_t count) { BOOST_ASSERT(count > 0); U sum = static_cast<U>(poly[count - 1]); for(int i = static_cast<int>(count) - 2; i >= 0; --i) { sum *= z; sum += static_cast<U>(poly[i]); } return sum; } // // Compile time sized polynomials, just inline forwarders to the // implementations above: // template <std::size_t N, class T, class V> inline V evaluate_polynomial(const T(&a)[N], const V& val) { typedef mpl::int_<N> tag_type; return detail::evaluate_polynomial_c_imp(static_cast<const T*>(a), val, static_cast<tag_type const*>(0)); } template <std::size_t N, class T, class V> inline V evaluate_polynomial(const boost::array<T,N>& a, const V& val) { typedef mpl::int_<N> tag_type; return detail::evaluate_polynomial_c_imp(static_cast<const T*>(a.data()), val, static_cast<tag_type const*>(0)); } // // Even polynomials are trivial: just square the argument! // template <class T, class U> inline U evaluate_even_polynomial(const T* poly, U z, std::size_t count) { return evaluate_polynomial(poly, z*z, count); } template <std::size_t N, class T, class V> inline V evaluate_even_polynomial(const T(&a)[N], const V& z) { return evaluate_polynomial(a, z*z); } template <std::size_t N, class T, class V> inline V evaluate_even_polynomial(const boost::array<T,N>& a, const V& z) { return evaluate_polynomial(a, z*z); } // // Odd polynomials come next: // template <class T, class U> inline U evaluate_odd_polynomial(const T* poly, U z, std::size_t count) { return poly[0] + z * evaluate_polynomial(poly+1, z*z, count-1); } template <std::size_t N, class T, class V> inline V evaluate_odd_polynomial(const T(&a)[N], const V& z) { typedef mpl::int_<N-1> tag_type; return a[0] + z * detail::evaluate_polynomial_c_imp(static_cast<const T*>(a) + 1, z*z, static_cast<tag_type const*>(0)); } template <std::size_t N, class T, class V> inline V evaluate_odd_polynomial(const boost::array<T,N>& a, const V& z) { typedef mpl::int_<N-1> tag_type; return a[0] + z * detail::evaluate_polynomial_c_imp(static_cast<const T*>(a.data()) + 1, z*z, static_cast<tag_type const*>(0)); } template <class T, class U, class V> V evaluate_rational(const T* num, const U* denom, const V& z_, std::size_t count); namespace detail{ template <class T, class U, class V, class Tag> inline V evaluate_rational_c_imp(const T* num, const U* denom, const V& z, const Tag*) { return boost::math::tools::evaluate_rational(num, denom, z, Tag::value); } } // // Rational functions: numerator and denominator must be // equal in size. These always have a for-loop and so may be less // efficient than evaluating a pair of polynomials. However, there // are some tricks we can use to prevent overflow that might otherwise // occur in polynomial evaluation, if z is large. This is important // in our Lanczos code for example. // template <class T, class U, class V> V evaluate_rational(const T* num, const U* denom, const V& z_, std::size_t count) { V z(z_); V s1, s2; if(z <= 1) { s1 = static_cast<V>(num[count-1]); s2 = static_cast<V>(denom[count-1]); for(int i = (int)count - 2; i >= 0; --i) { s1 *= z; s2 *= z; s1 += num[i]; s2 += denom[i]; } } else { z = 1 / z; s1 = static_cast<V>(num[0]); s2 = static_cast<V>(denom[0]); for(unsigned i = 1; i < count; ++i) { s1 *= z; s2 *= z; s1 += num[i]; s2 += denom[i]; } } return s1 / s2; } template <std::size_t N, class T, class U, class V> inline V evaluate_rational(const T(&a)[N], const U(&b)[N], const V& z) { return detail::evaluate_rational_c_imp(a, b, z, static_cast<const mpl::int_<N>*>(0)); } template <std::size_t N, class T, class U, class V> inline V evaluate_rational(const boost::array<T,N>& a, const boost::array<U,N>& b, const V& z) { return detail::evaluate_rational_c_imp(a.data(), b.data(), z, static_cast<mpl::int_<N>*>(0)); } } // namespace tools } // namespace math } // namespace boost #endif // BOOST_MATH_TOOLS_RATIONAL_HPP