boost/interprocess/allocators/adaptive_pool.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_ADAPTIVE_POOL_HPP
#define BOOST_INTERPROCESS_ADAPTIVE_POOL_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/interprocess_fwd.hpp>
#include <boost/assert.hpp>
#include <boost/utility/addressof.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/type_traits.hpp>
#include <boost/interprocess/allocators/detail/adaptive_node_pool.hpp>
#include <boost/interprocess/exceptions.hpp>
#include <boost/interprocess/allocators/detail/allocator_common.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <memory>
#include <algorithm>
#include <cstddef>
//!\file
//!Describes adaptive_pool pooled shared memory STL compatible allocator
namespace boost {
namespace interprocess {
/// @cond
namespace detail{
template < unsigned int Version
, class T
, class SegmentManager
, std::size_t NodesPerBlock
, std::size_t MaxFreeBlocks
, unsigned char OverheadPercent
>
class adaptive_pool_base
: public node_pool_allocation_impl
< adaptive_pool_base
< Version, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent>
, Version
, T
, SegmentManager
>
{
public:
typedef typename SegmentManager::void_pointer void_pointer;
typedef SegmentManager segment_manager;
typedef adaptive_pool_base
<Version, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> self_t;
/// @cond
template <int dummy>
struct node_pool
{
typedef detail::shared_adaptive_node_pool
< SegmentManager, sizeof_value<T>::value, NodesPerBlock, MaxFreeBlocks, OverheadPercent> type;
static type *get(void *p)
{ return static_cast<type*>(p); }
};
/// @endcond
BOOST_STATIC_ASSERT((Version <=2));
public:
//-------
typedef typename detail::
pointer_to_other<void_pointer, T>::type pointer;
typedef typename detail::
pointer_to_other<void_pointer, const T>::type const_pointer;
typedef T value_type;
typedef typename detail::add_reference
<value_type>::type reference;
typedef typename detail::add_reference
<const value_type>::type const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef detail::version_type<adaptive_pool_base, Version> version;
typedef transform_iterator
< typename SegmentManager::
multiallocation_iterator
, detail::cast_functor <T> > multiallocation_iterator;
typedef typename SegmentManager::
multiallocation_chain multiallocation_chain;
//!Obtains adaptive_pool_base from
//!adaptive_pool_base
template<class T2>
struct rebind
{
typedef adaptive_pool_base<Version, T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
};
/// @cond
private:
//!Not assignable from related adaptive_pool_base
template<unsigned int Version2, class T2, class SegmentManager2, std::size_t N2, std::size_t F2, unsigned char O2>
adaptive_pool_base& operator=
(const adaptive_pool_base<Version2, T2, SegmentManager2, N2, F2, O2>&);
/// @endcond
public:
//!Constructor from a segment manager. If not present, constructs a node
//!pool. Increments the reference count of the associated node pool.
//!Can throw boost::interprocess::bad_alloc
adaptive_pool_base(segment_manager *segment_mngr)
: mp_node_pool(detail::get_or_create_node_pool<typename node_pool<0>::type>(segment_mngr)) { }
//!Copy constructor from other adaptive_pool_base. Increments the reference
//!count of the associated node pool. Never throws
adaptive_pool_base(const adaptive_pool_base &other)
: mp_node_pool(other.get_node_pool())
{
node_pool<0>::get(detail::get_pointer(mp_node_pool))->inc_ref_count();
}
//!Assignment from other adaptive_pool_base
adaptive_pool_base& operator=(const adaptive_pool_base &other)
{
adaptive_pool_base c(other);
swap(*this, c);
return *this;
}
//!Copy constructor from related adaptive_pool_base. If not present, constructs
//!a node pool. Increments the reference count of the associated node pool.
//!Can throw boost::interprocess::bad_alloc
template<class T2>
adaptive_pool_base
(const adaptive_pool_base<Version, T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
: mp_node_pool(detail::get_or_create_node_pool<typename node_pool<0>::type>(other.get_segment_manager())) { }
//!Destructor, removes node_pool_t from memory
//!if its reference count reaches to zero. Never throws
~adaptive_pool_base()
{ detail::destroy_node_pool_if_last_link(node_pool<0>::get(detail::get_pointer(mp_node_pool))); }
//!Returns a pointer to the node pool.
//!Never throws
void* get_node_pool() const
{ return detail::get_pointer(mp_node_pool); }
//!Returns the segment manager.
//!Never throws
segment_manager* get_segment_manager()const
{ return node_pool<0>::get(detail::get_pointer(mp_node_pool))->get_segment_manager(); }
//!Swaps allocators. Does not throw. If each allocator is placed in a
//!different memory segment, the result is undefined.
friend void swap(self_t &alloc1, self_t &alloc2)
{ detail::do_swap(alloc1.mp_node_pool, alloc2.mp_node_pool); }
/// @cond
private:
void_pointer mp_node_pool;
/// @endcond
};
//!Equality test for same type
//!of adaptive_pool_base
template<unsigned int V, class T, class S, std::size_t NPC, std::size_t F, unsigned char OP> inline
bool operator==(const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc1,
const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc2)
{ return alloc1.get_node_pool() == alloc2.get_node_pool(); }
//!Inequality test for same type
//!of adaptive_pool_base
template<unsigned int V, class T, class S, std::size_t NPC, std::size_t F, unsigned char OP> inline
bool operator!=(const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc1,
const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc2)
{ return alloc1.get_node_pool() != alloc2.get_node_pool(); }
template < class T
, class SegmentManager
, std::size_t NodesPerBlock = 64
, std::size_t MaxFreeBlocks = 2
, unsigned char OverheadPercent = 5
>
class adaptive_pool_v1
: public adaptive_pool_base
< 1
, T
, SegmentManager
, NodesPerBlock
, MaxFreeBlocks
, OverheadPercent
>
{
public:
typedef detail::adaptive_pool_base
< 1, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> base_t;
template<class T2>
struct rebind
{
typedef adaptive_pool_v1<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
};
adaptive_pool_v1(SegmentManager *segment_mngr)
: base_t(segment_mngr)
{}
template<class T2>
adaptive_pool_v1
(const adaptive_pool_v1<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
: base_t(other)
{}
};
} //namespace detail{
/// @endcond
//!An STL node allocator that uses a segment manager as memory
//!source. The internal pointer type will of the same type (raw, smart) as
//!"typename SegmentManager::void_pointer" type. This allows
//!placing the allocator in shared memory, memory mapped-files, etc...
//!
//!This node allocator shares a segregated storage between all instances
//!of adaptive_pool with equal sizeof(T) placed in the same segment
//!group. NodesPerBlock is the number of nodes allocated at once when the allocator
//!needs runs out of nodes. MaxFreeBlocks is the maximum number of totally free blocks
//!that the adaptive node pool will hold. The rest of the totally free blocks will be
//!deallocated with the segment manager.
//!
//!OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator:
//!(memory usable for nodes / total memory allocated from the segment manager)
template < class T
, class SegmentManager
, std::size_t NodesPerBlock
, std::size_t MaxFreeBlocks
, unsigned char OverheadPercent
>
class adaptive_pool
/// @cond
: public detail::adaptive_pool_base
< 2
, T
, SegmentManager
, NodesPerBlock
, MaxFreeBlocks
, OverheadPercent
>
/// @endcond
{
#ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
typedef detail::adaptive_pool_base
< 2, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> base_t;
public:
typedef detail::version_type<adaptive_pool, 2> version;
template<class T2>
struct rebind
{
typedef adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
};
adaptive_pool(SegmentManager *segment_mngr)
: base_t(segment_mngr)
{}
template<class T2>
adaptive_pool
(const adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
: base_t(other)
{}
#else //BOOST_INTERPROCESS_DOXYGEN_INVOKED
public:
typedef implementation_defined::segment_manager segment_manager;
typedef segment_manager::void_pointer void_pointer;
typedef implementation_defined::pointer pointer;
typedef implementation_defined::const_pointer const_pointer;
typedef T value_type;
typedef typename detail::add_reference
<value_type>::type reference;
typedef typename detail::add_reference
<const value_type>::type const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
//!Obtains adaptive_pool from
//!adaptive_pool
template<class T2>
struct rebind
{
typedef adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
};
private:
//!Not assignable from
//!related adaptive_pool
template<class T2, class SegmentManager2, std::size_t N2, std::size_t F2, unsigned char OP2>
adaptive_pool& operator=
(const adaptive_pool<T2, SegmentManager2, N2, F2, OP2>&);
//!Not assignable from
//!other adaptive_pool
//adaptive_pool& operator=(const adaptive_pool&);
public:
//!Constructor from a segment manager. If not present, constructs a node
//!pool. Increments the reference count of the associated node pool.
//!Can throw boost::interprocess::bad_alloc
adaptive_pool(segment_manager *segment_mngr);
//!Copy constructor from other adaptive_pool. Increments the reference
//!count of the associated node pool. Never throws
adaptive_pool(const adaptive_pool &other);
//!Copy constructor from related adaptive_pool. If not present, constructs
//!a node pool. Increments the reference count of the associated node pool.
//!Can throw boost::interprocess::bad_alloc
template<class T2>
adaptive_pool
(const adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other);
//!Destructor, removes node_pool_t from memory
//!if its reference count reaches to zero. Never throws
~adaptive_pool();
//!Returns a pointer to the node pool.
//!Never throws
void* get_node_pool() const;
//!Returns the segment manager.
//!Never throws
segment_manager* get_segment_manager()const;
//!Returns the number of elements that could be allocated.
//!Never throws
size_type max_size() const;
//!Allocate memory for an array of count elements.
//!Throws boost::interprocess::bad_alloc if there is no enough memory
pointer allocate(size_type count, cvoid_pointer hint = 0);
//!Deallocate allocated memory.
//!Never throws
void deallocate(const pointer &ptr, size_type count);
//!Deallocates all free blocks
//!of the pool
void deallocate_free_blocks();
//!Swaps allocators. Does not throw. If each allocator is placed in a
//!different memory segment, the result is undefined.
friend void swap(self_t &alloc1, self_t &alloc2);
//!Returns address of mutable object.
//!Never throws
pointer address(reference value) const;
//!Returns address of non mutable object.
//!Never throws
const_pointer address(const_reference value) const;
//!Copy construct an object.
//!Throws if T's copy constructor throws
void construct(const pointer &ptr, const_reference v);
//!Destroys object. Throws if object's
//!destructor throws
void destroy(const pointer &ptr);
//!Returns maximum the number of objects the previously allocated memory
//!pointed by p can hold. This size only works for memory allocated with
//!allocate, allocation_command and allocate_many.
size_type size(const pointer &p) const;
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size, const pointer &reuse = 0);
//!Allocates many elements of size elem_size in a contiguous block
//!of memory. The minimum number to be allocated is min_elements,
//!the preferred and maximum number is
//!preferred_elements. The number of actually allocated elements is
//!will be assigned to received_size. The elements must be deallocated
//!with deallocate(...)
multiallocation_iterator allocate_many(size_type elem_size, std::size_t num_elements);
//!Allocates n_elements elements, each one of size elem_sizes[i]in a
//!contiguous block
//!of memory. The elements must be deallocated
multiallocation_iterator allocate_many(const size_type *elem_sizes, size_type n_elements);
//!Allocates many elements of size elem_size in a contiguous block
//!of memory. The minimum number to be allocated is min_elements,
//!the preferred and maximum number is
//!preferred_elements. The number of actually allocated elements is
//!will be assigned to received_size. The elements must be deallocated
//!with deallocate(...)
void deallocate_many(multiallocation_iterator it);
//!Allocates just one object. Memory allocated with this function
//!must be deallocated only with deallocate_one().
//!Throws boost::interprocess::bad_alloc if there is no enough memory
pointer allocate_one();
//!Allocates many elements of size == 1 in a contiguous block
//!of memory. The minimum number to be allocated is min_elements,
//!the preferred and maximum number is
//!preferred_elements. The number of actually allocated elements is
//!will be assigned to received_size. Memory allocated with this function
//!must be deallocated only with deallocate_one().
multiallocation_iterator allocate_individual(std::size_t num_elements);
//!Deallocates memory previously allocated with allocate_one().
//!You should never use deallocate_one to deallocate memory allocated
//!with other functions different from allocate_one(). Never throws
void deallocate_one(const pointer &p);
//!Allocates many elements of size == 1 in a contiguous block
//!of memory. The minimum number to be allocated is min_elements,
//!the preferred and maximum number is
//!preferred_elements. The number of actually allocated elements is
//!will be assigned to received_size. Memory allocated with this function
//!must be deallocated only with deallocate_one().
void deallocate_individual(multiallocation_iterator it);
#endif
};
#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
//!Equality test for same type
//!of adaptive_pool
template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
bool operator==(const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
//!Inequality test for same type
//!of adaptive_pool
template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
bool operator!=(const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
#endif
} //namespace interprocess {
} //namespace boost {
#include <boost/interprocess/detail/config_end.hpp>
#endif //#ifndef BOOST_INTERPROCESS_ADAPTIVE_POOL_HPP