boost/interprocess/containers/map.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//
// This file comes from SGI's stl_map/stl_multimap files. Modified by Ion Gaztanaga.
// Renaming, isolating and porting to generic algorithms. Pointer typedef
// set to allocator::pointer to allow placing it in shared memory.
//
///////////////////////////////////////////////////////////////////////////////
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifndef BOOST_INTERPROCESS_MAP_HPP
#define BOOST_INTERPROCESS_MAP_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/interprocess_fwd.hpp>
#include <utility>
#include <functional>
#include <memory>
#include <stdexcept>
#include <boost/interprocess/containers/detail/tree.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/move.hpp>
namespace boost { namespace interprocess {
/// @cond
// Forward declarations of operators == and <, needed for friend declarations.
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y);
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y);
/// @endcond
//! A map is a kind of associative container that supports unique keys (contains at
//! most one of each key value) and provides for fast retrieval of values of another
//! type T based on the keys. The map class supports bidirectional iterators.
//!
//! A map satisfies all of the requirements of a container and of a reversible
//! container and of an associative container. For a
//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>.
//!
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
//!
//! Alloc is the allocator to allocate the value_types
//! (e.g. <i>boost::interprocess:allocator< std::pair<const Key, T></i>).
template <class Key, class T, class Pred, class Alloc>
class map
{
/// @cond
private:
typedef detail::rbtree<Key,
std::pair<const Key, T>,
detail::select1st< std::pair<const Key, T> >,
Pred,
Alloc> tree_t;
tree_t m_tree; // red-black tree representing map
/// @endcond
public:
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef T mapped_type;
typedef Pred key_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
/// @cond
class value_compare_impl
: public Pred,
public std::binary_function<value_type, value_type, bool>
{
friend class map<Key,T,Pred,Alloc>;
protected :
value_compare_impl(const Pred &c) : Pred(c) {}
public:
bool operator()(const value_type& x, const value_type& y) const {
return Pred::operator()(x.first, y.first);
}
};
/// @endcond
typedef value_compare_impl value_compare;
//! <b>Effects</b>: Constructs an empty map using the specified comparison object
//! and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit map(const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_tree(comp, a)
{}
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_tree(first, last, comp, a, true)
{}
//! <b>Effects</b>: Copy constructs a map.
//!
//! <b>Complexity</b>: Linear in x.size().
map(const map<Key,T,Pred,Alloc>& x)
: m_tree(x.m_tree)
{}
//! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
map(detail::moved_object<map<Key,T,Pred,Alloc> > x)
: m_tree(detail::move_impl(x.get().m_tree))
{}
#else
map(map<Key,T,Pred,Alloc> &&x)
: m_tree(detail::move_impl(x.m_tree))
{}
#endif
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
map<Key,T,Pred,Alloc>& operator=(const map<Key, T, Pred, Alloc>& x)
{ m_tree = x.m_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
map<Key,T,Pred,Alloc>& operator=(detail::moved_object<map<Key,T,Pred,Alloc> > x)
{ m_tree = detail::move_impl(x.get().m_tree); return *this; }
#else
map<Key,T,Pred,Alloc>& operator=(map<Key,T,Pred,Alloc> &&x)
{ m_tree = detail::move_impl(x.m_tree); return *this; }
#endif
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return value_compare(m_tree.key_comp()); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return m_tree.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return m_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_tree.max_size(); }
//! Effects: If there is no key equivalent to x in the map, inserts
//! value_type(x, T()) into the map.
//!
//! Returns: A reference to the mapped_type corresponding to x in *this.
//!
//! Complexity: Logarithmic.
T& operator[](const key_type& k)
{
//we can optimize this
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first)){
value_type val(k, detail::move_impl(T()));
i = insert(i, detail::move_impl(val));
}
return (*i).second;
}
//! Effects: If there is no key equivalent to x in the map, inserts
//! value_type(detail::move_impl(x), T()) into the map (the key is move-constructed)
//!
//! Returns: A reference to the mapped_type corresponding to x in *this.
//!
//! Complexity: Logarithmic.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
T& operator[](detail::moved_object<key_type> mk)
{
key_type &k = mk.get();
//we can optimize this
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first)){
value_type val(k, detail::move_impl(T()));
i = insert(i, detail::move_impl(val));
}
return (*i).second;
}
#else
T& operator[](key_type &&mk)
{
key_type &k = mk;
//we can optimize this
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first)){
value_type val(detail::move_impl(k), detail::move_impl(T()));
i = insert(i, detail::move_impl(val));
}
return (*i).second;
}
#endif
//! Returns: A reference to the element whose key is equivalent to x.
//! Throws: An exception object of type out_of_range if no such element is present.
//! Complexity: logarithmic.
T& at(const key_type& k)
{
iterator i = this->find(k);
if(i == this->end()){
throw std::out_of_range("key not found");
}
return i->second;
}
//! Returns: A reference to the element whose key is equivalent to x.
//! Throws: An exception object of type out_of_range if no such element is present.
//! Complexity: logarithmic.
const T& at(const key_type& k) const
{
const_iterator i = this->find(k);
if(i == this->end()){
throw std::out_of_range("key not found");
}
return i->second;
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
void swap(detail::moved_object<map> x)
{ this->swap(x.get()); }
void swap(map& x)
#else
void swap(map &&x)
#endif
{ m_tree.swap(x.m_tree); }
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(const value_type& x)
{ return m_tree.insert_unique(x); }
//! <b>Effects</b>: Inserts a new value_type created from the pair if and only if
//! there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(const std::pair<key_type, mapped_type>& x)
{ return m_tree.insert_unique(x); }
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
std::pair<iterator,bool> insert(detail::moved_object<std::pair<key_type, mapped_type> > x)
{ return m_tree.insert_unique(x); }
#else
std::pair<iterator,bool> insert(std::pair<key_type, mapped_type> &&x)
{ return m_tree.insert_unique(detail::move_impl(x)); }
#endif
//! <b>Effects</b>: Move constructs a new value from x if and only if there is
//! no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
std::pair<iterator,bool> insert(detail::moved_object<value_type> x)
{ return m_tree.insert_unique(x); }
#else
std::pair<iterator,bool> insert(value_type &&x)
{ return m_tree.insert_unique(detail::move_impl(x)); }
#endif
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(iterator position, const value_type& x)
{ return m_tree.insert_unique(position, x); }
//! <b>Effects</b>: Move constructs a new value from x if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(iterator position, detail::moved_object<std::pair<key_type, mapped_type> > x)
{ return m_tree.insert_unique(position, x); }
#else
iterator insert(iterator position, std::pair<key_type, mapped_type> &&x)
{ return m_tree.insert_unique(position, detail::move_impl(x)); }
#endif
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(iterator position, const std::pair<key_type, mapped_type>& x)
{ return m_tree.insert_unique(position, x); }
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(iterator position, detail::moved_object<value_type> x)
{ return m_tree.insert_unique(position, x); }
#else
iterator insert(iterator position, value_type &&x)
{ return m_tree.insert_unique(position, detail::move_impl(x)); }
#endif
//! <b>Requires</b>: i, j are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [i,j) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_tree.insert_unique(first, last); }
#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with an equivalent key.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace(Args&&... args)
{ return m_tree.emplace_unique(detail::forward_impl<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with an equivalent key.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_tree.emplace_hint_unique(hint, detail::forward_impl<Args>(args)...); }
#else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
iterator emplace()
{ return m_tree.emplace_unique(); }
iterator emplace_hint(const_iterator hint)
{ return m_tree.emplace_hint_unique(hint); }
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _));}\
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Amortized constant time
iterator erase(const_iterator position)
{ return m_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: log(size()) + count(k)
size_type erase(const key_type& x)
{ return m_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
iterator erase(const_iterator first, const_iterator last)
{ return m_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_tree.clear(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_tree.find(x); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
const_iterator find(const key_type& x) const
{ return m_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_tree.find(x) == m_tree.end() ? 0 : 1; }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_tree.upper_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return m_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
{ return m_tree.equal_range(x); }
/// @cond
template <class K1, class T1, class C1, class A1>
friend bool operator== (const map<K1, T1, C1, A1>&,
const map<K1, T1, C1, A1>&);
template <class K1, class T1, class C1, class A1>
friend bool operator< (const map<K1, T1, C1, A1>&,
const map<K1, T1, C1, A1>&);
/// @endcond
};
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y)
{ return x.m_tree == y.m_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y)
{ return x.m_tree < y.m_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator!=(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y)
{ return !(x == y); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y)
{ return y < x; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<=(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y)
{ return !(y < x); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>=(const map<Key,T,Pred,Alloc>& x,
const map<Key,T,Pred,Alloc>& y)
{ return !(x < y); }
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
template <class Key, class T, class Pred, class Alloc>
inline void swap(map<Key,T,Pred,Alloc>& x, map<Key,T,Pred,Alloc>& y)
{ x.swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(detail::moved_object<map<Key,T,Pred,Alloc> > x, map<Key,T,Pred,Alloc>& y)
{ x.get().swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(map<Key,T,Pred,Alloc>& x, detail::moved_object<map<Key,T,Pred,Alloc> > y)
{ x.swap(y.get()); }
#else
template <class Key, class T, class Pred, class Alloc>
inline void swap(map<Key,T,Pred,Alloc>&&x, map<Key,T,Pred,Alloc>&&y)
{ x.swap(y); }
#endif
/// @cond
//!This class is movable
template <class T, class P, class A>
struct is_movable<map<T, P, A> >
{
enum { value = true };
};
// Forward declaration of operators < and ==, needed for friend declaration.
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y);
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y);
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class T, class C, class A>
struct has_trivial_destructor_after_move<map<K, T, C, A> >
{
enum { value =
has_trivial_destructor<A>::value &&
has_trivial_destructor<C>::value };
};
/// @endcond
//! A multimap is a kind of associative container that supports equivalent keys
//! (possibly containing multiple copies of the same key value) and provides for
//! fast retrieval of values of another type T based on the keys. The multimap class
//! supports bidirectional iterators.
//!
//! A multimap satisfies all of the requirements of a container and of a reversible
//! container and of an associative container. For a
//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>.
//!
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
//!
//! Alloc is the allocator to allocate the value_types
//!(e.g. <i>boost::interprocess:allocator< std::pair<<b>const</b> Key, T></i>).
template <class Key, class T, class Pred, class Alloc>
class multimap
{
/// @cond
private:
typedef detail::rbtree<Key,
std::pair<const Key, T>,
detail::select1st< std::pair<const Key, T> >,
Pred,
Alloc> tree_t;
tree_t m_tree; // red-black tree representing map
/// @endcond
public:
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef T mapped_type;
typedef Pred key_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
/// @cond
class value_compare_impl
: public Pred,
public std::binary_function<value_type, value_type, bool>
{
friend class multimap<Key,T,Pred,Alloc>;
protected :
value_compare_impl(const Pred &c) : Pred(c) {}
public:
bool operator()(const value_type& x, const value_type& y) const {
return Pred::operator()(x.first, y.first);
}
};
/// @endcond
typedef value_compare_impl value_compare;
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison
//! object and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit multimap(const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_tree(comp, a)
{}
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison object
//! and allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
multimap(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_tree(first, last, comp, a, false)
{}
//! <b>Effects</b>: Copy constructs a multimap.
//!
//! <b>Complexity</b>: Linear in x.size().
multimap(const multimap<Key,T,Pred,Alloc>& x)
: m_tree(x.m_tree)
{}
//! <b>Effects</b>: Move constructs a multimap. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
multimap(detail::moved_object<multimap<Key,T,Pred,Alloc> > x)
: m_tree(detail::move_impl(x.get().m_tree))
{}
#else
multimap(multimap<Key,T,Pred,Alloc> && x)
: m_tree(detail::move_impl(x.m_tree))
{}
#endif
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
multimap<Key,T,Pred,Alloc>&
operator=(const multimap<Key,T,Pred,Alloc>& x)
{ m_tree = x.m_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
multimap<Key,T,Pred,Alloc>& operator=(detail::moved_object<multimap<Key,T,Pred,Alloc> > x)
{ m_tree = detail::move_impl(x.get().m_tree); return *this; }
#else
multimap<Key,T,Pred,Alloc>& operator=(multimap<Key,T,Pred,Alloc> && x)
{ m_tree = detail::move_impl(x.m_tree); return *this; }
#endif
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return value_compare(m_tree.key_comp()); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return m_tree.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return m_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
void swap(detail::moved_object<multimap> x)
{ this->swap(x.get()); }
void swap(multimap& x)
#else
void swap(multimap &&x)
#endif
{ m_tree.swap(x.m_tree); }
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(const value_type& x)
{ return m_tree.insert_equal(x); }
//! <b>Effects</b>: Inserts a new value constructed from x and returns
//! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(const std::pair<key_type, mapped_type>& x)
{ return m_tree.insert_equal(x); }
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns
//! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(detail::moved_object<std::pair<key_type, mapped_type> > x)
{ return m_tree.insert_equal(x); }
#else
iterator insert(std::pair<key_type, mapped_type> && x)
{ return m_tree.insert_equal(detail::move_impl(x)); }
#endif
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(iterator position, const value_type& x)
{ return m_tree.insert_equal(position, x); }
//! <b>Effects</b>: Inserts a new value constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(iterator position, const std::pair<key_type, mapped_type>& x)
{ return m_tree.insert_equal(position, x); }
//! <b>Effects</b>: Inserts a new value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(iterator position, detail::moved_object<std::pair<key_type, mapped_type> > x)
{ return m_tree.insert_equal(position, x); }
#else
iterator insert(iterator position, std::pair<key_type, mapped_type> && x)
{ return m_tree.insert_equal(position, detail::move_impl(x)); }
#endif
//! <b>Requires</b>: i, j are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [i,j) .
//!
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_tree.insert_equal(first, last); }
#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace(Args&&... args)
{ return m_tree.emplace_equal(detail::forward_impl<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_tree.emplace_hint_equal(hint, detail::forward_impl<Args>(args)...); }
#else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
iterator emplace()
{ return m_tree.emplace_equal(); }
iterator emplace_hint(const_iterator hint)
{ return m_tree.emplace_hint_equal(hint); }
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); }\
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Amortized constant time
iterator erase(const_iterator position)
{ return m_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: log(size()) + count(k)
size_type erase(const key_type& x)
{ return m_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
iterator erase(const_iterator first, const_iterator last)
{ return m_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_tree.clear(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_tree.find(x); }
//! <b>Returns</b>: A const iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
const_iterator find(const key_type& x) const
{ return m_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{return m_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return m_tree.equal_range(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator,const_iterator>
equal_range(const key_type& x) const
{ return m_tree.equal_range(x); }
/// @cond
template <class K1, class T1, class C1, class A1>
friend bool operator== (const multimap<K1, T1, C1, A1>& x,
const multimap<K1, T1, C1, A1>& y);
template <class K1, class T1, class C1, class A1>
friend bool operator< (const multimap<K1, T1, C1, A1>& x,
const multimap<K1, T1, C1, A1>& y);
/// @endcond
};
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y)
{ return x.m_tree == y.m_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y)
{ return x.m_tree < y.m_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator!=(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y)
{ return !(x == y); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y)
{ return y < x; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<=(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y)
{ return !(y < x); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>=(const multimap<Key,T,Pred,Alloc>& x,
const multimap<Key,T,Pred,Alloc>& y)
{ return !(x < y); }
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
template <class Key, class T, class Pred, class Alloc>
inline void swap(multimap<Key,T,Pred,Alloc>& x, multimap<Key,T,Pred,Alloc>& y)
{ x.swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(detail::moved_object<multimap<Key,T,Pred,Alloc> > x, multimap<Key,T,Pred,Alloc>& y)
{ x.get().swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(multimap<Key,T,Pred,Alloc>& x, detail::moved_object<multimap<Key,T,Pred,Alloc> > y)
{ x.swap(y.get()); }
#else
template <class Key, class T, class Pred, class Alloc>
inline void swap(multimap<Key,T,Pred,Alloc>&&x, multimap<Key,T,Pred,Alloc>&&y)
{ x.swap(y); }
#endif
/// @cond
template <class T, class P, class A>
struct is_movable<multimap<T, P, A> >
{
enum { value = true };
};
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class T, class C, class A>
struct has_trivial_destructor_after_move<multimap<K, T, C, A> >
{
enum { value =
has_trivial_destructor<A>::value &&
has_trivial_destructor<C>::value };
};
/// @endcond
}} //namespace boost { namespace interprocess {
#include <boost/interprocess/detail/config_end.hpp>
#endif /* BOOST_INTERPROCESS_MAP_HPP */