boost/interprocess/containers/vector.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//
// This file comes from SGI's stl_vector.h file. Modified by Ion Gaztanaga.
// Renaming, isolating and porting to generic algorithms. Pointer typedef
// set to allocator::pointer to allow placing it in shared memory.
//
///////////////////////////////////////////////////////////////////////////////
// Copyright (c) 1994
// Hewlett-Packard Company
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. Hewlett-Packard Company makes no
// representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied warranty.
//
//
// Copyright (c) 1996
// Silicon Graphics Computer Systems, Inc.
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. Silicon Graphics makes no
// representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied warranty.
#ifndef BOOST_INTERPROCESS_VECTOR_HPP
#define BOOST_INTERPROCESS_VECTOR_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <cstddef>
#include <memory>
#include <algorithm>
#include <stdexcept>
#include <iterator>
#include <utility>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/type_traits/has_trivial_copy.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_nothrow_copy.hpp>
#include <boost/type_traits/has_nothrow_assign.hpp>
#include <boost/interprocess/detail/version_type.hpp>
#include <boost/interprocess/allocators/allocation_type.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/iterators.hpp>
#include <boost/interprocess/detail/algorithms.hpp>
#include <boost/interprocess/detail/min_max.hpp>
#include <boost/interprocess/interprocess_fwd.hpp>
#include <boost/interprocess/detail/move_iterator.hpp>
#include <boost/interprocess/detail/move.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/advanced_insert_int.hpp>
namespace boost {
namespace interprocess {
/// @cond
namespace detail {
//! Const vector_iterator used to iterate through a vector.
template <class Pointer>
class vector_const_iterator
: public std::iterator<std::random_access_iterator_tag
,const typename std::iterator_traits<Pointer>::value_type
,typename std::iterator_traits<Pointer>::difference_type
,typename pointer_to_other
<Pointer
,const typename std::iterator_traits<Pointer>::value_type
>::type
,const typename std::iterator_traits<Pointer>::value_type &>
{
public:
typedef const typename std::iterator_traits<Pointer>::value_type value_type;
typedef typename std::iterator_traits<Pointer>::difference_type difference_type;
typedef typename pointer_to_other<Pointer, value_type>::type pointer;
typedef value_type& reference;
/// @cond
protected:
Pointer m_ptr;
public:
Pointer get_ptr() const { return m_ptr; }
explicit vector_const_iterator(Pointer ptr) : m_ptr(ptr){}
/// @endcond
public:
//Constructors
vector_const_iterator() : m_ptr(0){}
//Pointer like operators
reference operator*() const
{ return *m_ptr; }
const value_type * operator->() const
{ return detail::get_pointer(m_ptr); }
reference operator[](difference_type off) const
{ return m_ptr[off]; }
//Increment / Decrement
vector_const_iterator& operator++()
{ ++m_ptr; return *this; }
vector_const_iterator operator++(int)
{ Pointer tmp = m_ptr; ++*this; return vector_const_iterator(tmp); }
vector_const_iterator& operator--()
{ --m_ptr; return *this; }
vector_const_iterator operator--(int)
{ Pointer tmp = m_ptr; --*this; return vector_const_iterator(tmp); }
//Arithmetic
vector_const_iterator& operator+=(difference_type off)
{ m_ptr += off; return *this; }
vector_const_iterator operator+(difference_type off) const
{ return vector_const_iterator(m_ptr+off); }
friend vector_const_iterator operator+(difference_type off, const vector_const_iterator& right)
{ return vector_const_iterator(off + right.m_ptr); }
vector_const_iterator& operator-=(difference_type off)
{ m_ptr -= off; return *this; }
vector_const_iterator operator-(difference_type off) const
{ return vector_const_iterator(m_ptr-off); }
difference_type operator-(const vector_const_iterator& right) const
{ return m_ptr - right.m_ptr; }
//Comparison operators
bool operator== (const vector_const_iterator& r) const
{ return m_ptr == r.m_ptr; }
bool operator!= (const vector_const_iterator& r) const
{ return m_ptr != r.m_ptr; }
bool operator< (const vector_const_iterator& r) const
{ return m_ptr < r.m_ptr; }
bool operator<= (const vector_const_iterator& r) const
{ return m_ptr <= r.m_ptr; }
bool operator> (const vector_const_iterator& r) const
{ return m_ptr > r.m_ptr; }
bool operator>= (const vector_const_iterator& r) const
{ return m_ptr >= r.m_ptr; }
};
//! Iterator used to iterate through a vector
template <class Pointer>
class vector_iterator
: public vector_const_iterator<Pointer>
{
public:
explicit vector_iterator(Pointer ptr)
: vector_const_iterator<Pointer>(ptr)
{}
public:
typedef typename std::iterator_traits<Pointer>::value_type value_type;
typedef typename vector_const_iterator<Pointer>::difference_type difference_type;
typedef Pointer pointer;
typedef value_type& reference;
//Constructors
vector_iterator()
{}
//Pointer like operators
reference operator*() const
{ return *this->m_ptr; }
value_type* operator->() const
{ return detail::get_pointer(this->m_ptr); }
reference operator[](difference_type off) const
{ return this->m_ptr[off]; }
//Increment / Decrement
vector_iterator& operator++()
{ ++this->m_ptr; return *this; }
vector_iterator operator++(int)
{ pointer tmp = this->m_ptr; ++*this; return vector_iterator(tmp); }
vector_iterator& operator--()
{ --this->m_ptr; return *this; }
vector_iterator operator--(int)
{ vector_iterator tmp = *this; --*this; return vector_iterator(tmp); }
// Arithmetic
vector_iterator& operator+=(difference_type off)
{ this->m_ptr += off; return *this; }
vector_iterator operator+(difference_type off) const
{ return vector_iterator(this->m_ptr+off); }
friend vector_iterator operator+(difference_type off, const vector_iterator& right)
{ return vector_iterator(off + right.m_ptr); }
vector_iterator& operator-=(difference_type off)
{ this->m_ptr -= off; return *this; }
vector_iterator operator-(difference_type off) const
{ return vector_iterator(this->m_ptr-off); }
difference_type operator-(const vector_const_iterator<Pointer>& right) const
{ return static_cast<const vector_const_iterator<Pointer>&>(*this) - right; }
};
template <class T, class A>
struct vector_value_traits
{
typedef T value_type;
typedef A allocator_type;
static const bool trivial_dctr = boost::has_trivial_destructor<value_type>::value;
static const bool trivial_dctr_after_move =
has_trivial_destructor_after_move<value_type>::value || trivial_dctr;
static const bool trivial_copy = has_trivial_copy<value_type>::value;
static const bool nothrow_copy = has_nothrow_copy<value_type>::value;
static const bool trivial_assign = has_trivial_assign<value_type>::value;
static const bool nothrow_assign = has_nothrow_assign<value_type>::value;
//This is the anti-exception array destructor
//to deallocate values already constructed
typedef typename detail::if_c
<trivial_dctr
,detail::null_scoped_destructor_n<allocator_type>
,detail::scoped_destructor_n<allocator_type>
>::type OldArrayDestructor;
//This is the anti-exception array destructor
//to destroy objects created with copy construction
typedef typename detail::if_c
<nothrow_copy
,detail::null_scoped_destructor_n<allocator_type>
,detail::scoped_destructor_n<allocator_type>
>::type UCopiedArrayDestructor;
//This is the anti-exception array deallocator
typedef typename detail::if_c
<nothrow_copy
,detail::null_scoped_array_deallocator<allocator_type>
,detail::scoped_array_deallocator<allocator_type>
>::type UCopiedArrayDeallocator;
//This is the optimized move iterator for copy constructors
//so that std::copy and similar can use memcpy
typedef typename detail::if_c
<trivial_copy
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|| !is_movable<value_type>::value
#endif
,const T*
,detail::move_iterator<T*>
>::type copy_move_it;
//This is the optimized move iterator for assignments
//so that std::uninitialized_copy and similar can use memcpy
typedef typename detail::if_c
<trivial_assign
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|| !is_movable<value_type>::value
#endif
,const T*
,detail::move_iterator<T*>
>::type assign_move_it;
};
//!This struct deallocates and allocated memory
template <class A>
struct vector_alloc_holder
{
typedef typename A::pointer pointer;
typedef typename A::size_type size_type;
typedef typename A::value_type value_type;
typedef vector_value_traits<value_type, A> value_traits;
//Constructor, does not throw
vector_alloc_holder(const A &a)
: members_(a)
{}
//Constructor, does not throw
vector_alloc_holder(const vector_alloc_holder<A> &h)
: members_(h.alloc())
{}
//Destructor
~vector_alloc_holder()
{
this->prot_destroy_all();
this->prot_deallocate();
}
typedef detail::integral_constant<unsigned, 1> allocator_v1;
typedef detail::integral_constant<unsigned, 2> allocator_v2;
typedef detail::integral_constant<unsigned,
boost::interprocess::detail::version<A>::value> alloc_version;
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size, const pointer &reuse = 0)
{
return allocation_command(command, limit_size, preferred_size,
received_size, reuse, alloc_version());
}
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size,
const pointer &reuse,
allocator_v1)
{
(void)limit_size;
(void)reuse;
if(!(command & allocate_new))
return std::pair<pointer, bool>(pointer(0), 0);
received_size = preferred_size;
return std::make_pair(this->alloc().allocate(received_size), false);
}
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size,
const pointer &reuse,
allocator_v2)
{
return this->alloc().allocation_command
(command, limit_size, preferred_size, received_size, reuse);
}
size_type next_capacity(size_type additional_objects) const
{ return get_next_capacity(this->alloc().max_size(), this->members_.m_capacity, additional_objects); }
struct members_holder
: public A
{
private:
members_holder(const members_holder&);
public:
members_holder(const A &alloc)
: A(alloc), m_start(0), m_size(0), m_capacity(0)
{}
pointer m_start;
size_type m_size;
size_type m_capacity;
} members_;
protected:
void prot_deallocate()
{
if(!this->members_.m_capacity) return;
this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity);
this->members_.m_start = 0;
this->members_.m_size = 0;
this->members_.m_capacity = 0;
}
void destroy(value_type* p)
{
if(!value_traits::trivial_dctr)
detail::get_pointer(p)->~value_type();
}
void destroy_n(value_type* p, size_type n)
{
if(!value_traits::trivial_dctr)
for(; n--; ++p) p->~value_type();
}
void prot_destroy_all()
{
this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size);
this->members_.m_size = 0;
}
A &alloc()
{ return members_; }
const A &alloc() const
{ return members_; }
};
} //namespace detail {
/// @endcond
//! A vector is a sequence that supports random access to elements, constant
//! time insertion and removal of elements at the end, and linear time insertion
//! and removal of elements at the beginning or in the middle. The number of
//! elements in a vector may vary dynamically; memory management is automatic.
//! boost::interprocess::vector is similar to std::vector but it's compatible
//! with shared memory and memory mapped files.
template <class T, class A>
class vector : private detail::vector_alloc_holder<A>
{
/// @cond
typedef vector<T, A> self_t;
typedef detail::vector_alloc_holder<A> base_t;
/// @endcond
public:
//! The type of object, T, stored in the vector
typedef T value_type;
//! Pointer to T
typedef typename A::pointer pointer;
//! Const pointer to T
typedef typename A::const_pointer const_pointer;
//! Reference to T
typedef typename A::reference reference;
//! Const reference to T
typedef typename A::const_reference const_reference;
//! An unsigned integral type
typedef typename A::size_type size_type;
//! A signed integral type
typedef typename A::difference_type difference_type;
//! The allocator type
typedef A allocator_type;
//! The random access iterator
typedef detail::vector_iterator<pointer> iterator;
//! The random access const_iterator
typedef detail::vector_const_iterator<pointer> const_iterator;
//! Iterator used to iterate backwards through a vector.
typedef std::reverse_iterator<iterator>
reverse_iterator;
//! Const iterator used to iterate backwards through a vector.
typedef std::reverse_iterator<const_iterator>
const_reverse_iterator;
//! The stored allocator type
typedef allocator_type stored_allocator_type;
/// @cond
private:
typedef detail::advanced_insert_aux_int<T, T*> advanced_insert_aux_int_t;
typedef detail::vector_value_traits<value_type, A> value_traits;
typedef typename base_t::allocator_v1 allocator_v1;
typedef typename base_t::allocator_v2 allocator_v2;
typedef typename base_t::alloc_version alloc_version;
typedef constant_iterator<T, difference_type> cvalue_iterator;
typedef repeat_iterator<T, difference_type> repeat_it;
typedef detail::move_iterator<repeat_it> repeat_move_it;
/// @endcond
public:
//! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
explicit vector(const A& a = A())
: base_t(a)
{}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
vector(size_type n, const T& value = T(),
const allocator_type& a = allocator_type())
: base_t(a)
{ this->insert(this->cend(), n, value); }
//! <b>Effects</b>: Copy constructs a vector.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
vector(const vector<T, A>& x)
: base_t((base_t&)x)
{ *this = x; }
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
vector(detail::moved_object<vector<T, A> > mx)
: base_t(mx.get())
{ this->swap(mx.get()); }
#else
vector(vector<T, A> && mx)
: base_t(detail::move_impl(mx))
{ this->swap(mx); }
#endif
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the vector.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor
//! throws or T's constructor taking an dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
vector(InIt first, InIt last, const allocator_type& a = allocator_type())
: base_t(a)
{ this->assign(first, last); }
//! <b>Effects</b>: Destroys the vector. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~vector()
{} //vector_alloc_holder clears the data
//! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return iterator(this->members_.m_start); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return const_iterator(this->members_.m_start); }
//! <b>Effects</b>: Returns an iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return iterator(this->members_.m_start + this->members_.m_size); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return this->cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return reverse_iterator(this->end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin()const
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return reverse_iterator(this->begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return const_iterator(this->members_.m_start); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return const_iterator(this->members_.m_start + this->members_.m_size); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin()const
{ return const_reverse_iterator(this->end());}
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return const_reverse_iterator(this->begin()); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front()
{ return *this->members_.m_start; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const
{ return *this->members_.m_start; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back()
{ return this->members_.m_start[this->members_.m_size - 1]; }
//! <b>Effects</b>: Returns a const reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const
{ return this->members_.m_start[this->members_.m_size - 1]; }
//! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
pointer data()
{ return this->members_.m_start; }
//! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_pointer data() const
{ return this->members_.m_start; }
//! <b>Effects</b>: Returns the number of the elements contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return this->members_.m_size; }
//! <b>Effects</b>: Returns the largest possible size of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return this->alloc().max_size(); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const
{ return this->members_.m_capacity; }
//! <b>Effects</b>: Returns true if the vector contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return !this->members_.m_size; }
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n)
{ return this->members_.m_start[n]; }
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const
{ return this->members_.m_start[n]; }
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n)
{ this->priv_check_range(n); return this->members_.m_start[n]; }
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n) const
{ this->priv_check_range(n); return this->members_.m_start[n]; }
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return this->alloc(); }
const stored_allocator_type &get_stored_allocator() const
{ return this->alloc(); }
stored_allocator_type &get_stored_allocator()
{ return this->alloc(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
void reserve(size_type new_cap)
{
if (this->capacity() < new_cap){
//There is not enough memory, allocate a new
//buffer or expand the old one.
bool same_buffer_start;
size_type real_cap = 0;
std::pair<pointer, bool> ret =
this->allocation_command
(allocate_new | expand_fwd | expand_bwd,
new_cap, new_cap, real_cap, this->members_.m_start);
//Check for forward expansion
same_buffer_start = ret.second && this->members_.m_start == ret.first;
if(same_buffer_start){
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->members_.m_capacity = real_cap;
}
//If there is no forward expansion, move objects
else{
//We will reuse insert code, so create a dummy input iterator
typename value_traits::copy_move_it dummy_it(detail::get_pointer(this->members_.m_start));
detail::advanced_insert_aux_proxy<T, typename value_traits::copy_move_it, T*>
proxy(dummy_it, dummy_it);
//Backwards (and possibly forward) expansion
if(ret.second){
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_range_insert_expand_backwards
( detail::get_pointer(ret.first)
, real_cap
, detail::get_pointer(this->members_.m_start)
, 0
, proxy);
}
//New buffer
else{
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_range_insert_new_allocation
( detail::get_pointer(ret.first)
, real_cap
, detail::get_pointer(this->members_.m_start)
, 0
, proxy);
}
}
}
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
vector<T, A>& operator=(const vector<T, A>& x)
{
if (&x != this){
this->assign(x.members_.m_start, x.members_.m_start + x.members_.m_size);
}
return *this;
}
//! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
vector<T, A>& operator=(detail::moved_object<vector<T, A> > mx)
{
vector<T, A> &x = mx.get();
#else
vector<T, A>& operator=(vector<T, A> && x)
{
#endif
if (&x != this){
this->swap(x);
x.clear();
}
return *this;
}
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const value_type& val)
{ this->assign(cvalue_iterator(val, n), cvalue_iterator()); }
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InIt>
void assign(InIt first, InIt last)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = detail::is_convertible<InIt, std::size_t>::value;
typedef detail::bool_<aux_boolean> Result;
this->priv_assign_dispatch(first, last, Result());
}
//! <b>Effects</b>: Inserts a copy of x at the end of the vector.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T& x)
{
if (this->members_.m_size < this->members_.m_capacity){
//There is more memory, just construct a new object at the end
new((void*)(detail::get_pointer(this->members_.m_start) + this->members_.m_size))value_type(x);
++this->members_.m_size;
}
else{
this->insert(this->cend(), x);
}
}
//! <b>Effects</b>: Constructs a new element in the end of the vector
//! and moves the resources of mx to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
void push_back(detail::moved_object<T> mx)
{
value_type &x = mx.get();
#else
void push_back(T && x)
{
#endif
if (this->members_.m_size < this->members_.m_capacity){
//There is more memory, just construct a new object at the end
new((void*)detail::get_pointer(this->members_.m_start + this->members_.m_size))value_type(detail::move_impl(x));
++this->members_.m_size;
}
else{
this->insert(this->cend(), detail::move_impl(x));
}
}
#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the vector.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
template<class ...Args>
void emplace_back(Args &&...args)
{
T* back_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
if (this->members_.m_size < this->members_.m_capacity){
//There is more memory, just construct a new object at the end
new((void*)(back_pos))value_type(detail::forward_impl<Args>(args)...);
++this->members_.m_size;
}
else{
detail::advanced_insert_aux_emplace<T, T*, Args...> proxy
(detail::forward_impl<Args>(args)...);
priv_range_insert(back_pos, 1, proxy);
}
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before position
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
template<class ...Args>
iterator emplace(const_iterator position, Args && ...args)
{
//Just call more general insert(pos, size, value) and return iterator
size_type pos_n = position - cbegin();
detail::advanced_insert_aux_emplace<T, T*, Args...> proxy
(detail::forward_impl<Args>(args)...);
priv_range_insert(position.get_ptr(), 1, proxy);
return iterator(this->members_.m_start + pos_n);
}
#else
void emplace_back()
{
T* back_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
if (this->members_.m_size < this->members_.m_capacity){
//There is more memory, just construct a new object at the end
new((void*)(back_pos))value_type();
++this->members_.m_size;
}
else{
detail::advanced_insert_aux_emplace<value_type, T*> proxy;
priv_range_insert(back_pos, 1, proxy);
}
}
iterator emplace(const_iterator position)
{
size_type pos_n = position - cbegin();
detail::advanced_insert_aux_emplace<value_type, T*> proxy;
priv_range_insert(detail::get_pointer(position.get_ptr()), 1, proxy);
return iterator(this->members_.m_start + pos_n);
}
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
void emplace_back(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
T* back_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size; \
if (this->members_.m_size < this->members_.m_capacity){ \
new((void*)(back_pos))value_type \
(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
++this->members_.m_size; \
} \
else{ \
detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
<value_type, T*, BOOST_PP_ENUM_PARAMS(n, P)> \
proxy(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
priv_range_insert(back_pos, 1, proxy); \
} \
} \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace(const_iterator pos, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
size_type pos_n = pos - cbegin(); \
detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
<value_type, T*, BOOST_PP_ENUM_PARAMS(n, P)> \
proxy(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
priv_range_insert(detail::get_pointer(pos.get_ptr()), 1, proxy); \
return iterator(this->members_.m_start + pos_n); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Swaps the contents of *this and x.
//! If this->allocator_type() != x.allocator_type()
//! allocators are also swapped.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
void swap(detail::moved_object<vector> x)
{ this->swap(x.get()); }
void swap(vector& x)
#else
void swap(vector &&x)
#endif
{
allocator_type &this_al = this->alloc(), &other_al = x.alloc();
//Just swap internals
detail::do_swap(this->members_.m_start, x.members_.m_start);
detail::do_swap(this->members_.m_size, x.members_.m_size);
detail::do_swap(this->members_.m_capacity, x.members_.m_capacity);
if (this_al != other_al){
detail::do_swap(this_al, other_al);
}
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before position.
//!
//! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, const T& x)
{
//Just call more general insert(pos, size, value) and return iterator
size_type pos_n = position - cbegin();
this->insert(position, (size_type)1, x);
return iterator(this->members_.m_start + pos_n);
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before position with mx's resources.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(const_iterator position, detail::moved_object<T> mx)
{
value_type &x = mx.get();
#else
iterator insert(const_iterator position, T &&x)
{
#endif
//Just call more general insert(pos, size, value) and return iterator
size_type pos_n = position - cbegin();
this->insert(position
,repeat_move_it(repeat_it(x, 1))
,repeat_move_it(repeat_it()));
return iterator(this->members_.m_start + pos_n);
}
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last).
template <class InIt>
void insert(const_iterator pos, InIt first, InIt last)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = detail::is_convertible<InIt, std::size_t>::value;
typedef detail::bool_<aux_boolean> Result;
this->priv_insert_dispatch(pos, first, last, Result());
}
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert n copies of x before pos.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void insert(const_iterator p, size_type n, const T& x)
{ this->insert(p, cvalue_iterator(x, n), cvalue_iterator()); }
//! <b>Effects</b>: Removes the last element from the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_back()
{
//Destroy last element
--this->members_.m_size;
this->destroy(detail::get_pointer(this->members_.m_start) + this->members_.m_size);
}
//! <b>Effects</b>: Erases the element at position pos.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements between pos and the
//! last element. Constant if pos is the first or the last element.
iterator erase(const_iterator position)
{
T *pos = detail::get_pointer(position.get_ptr());
T *beg = detail::get_pointer(this->members_.m_start);
typedef typename value_traits::assign_move_it assign_move_it;
std::copy(assign_move_it(pos + 1), assign_move_it(beg + this->members_.m_size), pos);
--this->members_.m_size;
//Destroy last element
base_t::destroy(detail::get_pointer(this->members_.m_start) + this->members_.m_size);
return iterator(position.get_ptr());
}
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and last.
iterator erase(const_iterator first, const_iterator last)
{
typedef typename value_traits::assign_move_it assign_move_it;
if (first != last){ // worth doing, copy down over hole
T* end_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
T* ptr = detail::get_pointer(std::copy
(assign_move_it(detail::get_pointer(last.get_ptr()))
,assign_move_it(end_pos)
,detail::get_pointer(first.get_ptr())
));
size_type destroyed = (end_pos - ptr);
this->destroy_n(ptr, destroyed);
this->members_.m_size -= destroyed;
}
return iterator(first.get_ptr());
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const T& x)
{
pointer finish = this->members_.m_start + this->members_.m_size;
if (new_size < size()){
//Destroy last elements
this->erase(const_iterator(this->members_.m_start + new_size), this->end());
}
else{
//Insert new elements at the end
this->insert(const_iterator(finish), new_size - this->size(), x);
}
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default constructed.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{
if (new_size < this->size()){
//Destroy last elements
this->erase(const_iterator(this->members_.m_start + new_size), this->end());
}
else{
size_type n = new_size - this->size();
this->reserve(new_size);
detail::default_construct_aux_proxy<T, T*, size_type> proxy(n);
priv_range_insert(this->cend().get_ptr(), n, proxy);
}
}
//! <b>Effects</b>: Erases all the elements of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the vector.
void clear()
{ this->prot_destroy_all(); }
/// @cond
//! <b>Effects</b>: Tries to deallocate the excess of memory created
//! with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ priv_shrink_to_fit(alloc_version()); }
private:
void priv_shrink_to_fit(allocator_v1)
{
if(this->members_.m_capacity){
if(!size()){
this->prot_deallocate();
}
else{
//This would not work with stateful allocators
vector<T, A>(*this).swap(*this);
}
}
}
void priv_shrink_to_fit(allocator_v2)
{
if(this->members_.m_capacity){
if(!size()){
this->prot_deallocate();
}
else{
size_type received_size;
if(this->alloc().allocation_command
( shrink_in_place | nothrow_allocation
, this->capacity(), this->size()
, received_size, this->members_.m_start).first){
this->members_.m_capacity = received_size;
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
++this->num_shrink;
#endif
}
}
}
}
template <class FwdIt>
void priv_range_insert(pointer pos, FwdIt first, FwdIt last, std::forward_iterator_tag)
{
if(first != last){
const size_type n = std::distance(first, last);
detail::advanced_insert_aux_proxy<T, FwdIt, T*> proxy(first, last);
priv_range_insert(pos, n, proxy);
}
}
void priv_range_insert(pointer pos, const size_type n, advanced_insert_aux_int_t &interf)
{
//Check if we have enough memory or try to expand current memory
size_type remaining = this->members_.m_capacity - this->members_.m_size;
bool same_buffer_start;
std::pair<pointer, bool> ret;
size_type real_cap = this->members_.m_capacity;
//Check if we already have room
if (n <= remaining){
same_buffer_start = true;
}
else{
//There is not enough memory, allocate a new
//buffer or expand the old one.
size_type new_cap = this->next_capacity(n);
ret = this->allocation_command
(allocate_new | expand_fwd | expand_bwd,
this->members_.m_size + n, new_cap, real_cap, this->members_.m_start);
//Check for forward expansion
same_buffer_start = ret.second && this->members_.m_start == ret.first;
if(same_buffer_start){
this->members_.m_capacity = real_cap;
}
}
//If we had room or we have expanded forward
if (same_buffer_start){
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->priv_range_insert_expand_forward
(detail::get_pointer(pos), n, interf);
}
//Backwards (and possibly forward) expansion
else if(ret.second){
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_range_insert_expand_backwards
( detail::get_pointer(ret.first)
, real_cap
, detail::get_pointer(pos)
, n
, interf);
}
//New buffer
else{
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_range_insert_new_allocation
( detail::get_pointer(ret.first)
, real_cap
, detail::get_pointer(pos)
, n
, interf);
}
}
void priv_range_insert_expand_forward(T* pos, size_type n, advanced_insert_aux_int_t &interf)
{
typedef typename value_traits::copy_move_it copy_move_it;
typedef typename value_traits::assign_move_it assign_move_it;
//There is enough memory
T* old_finish = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
const size_type elems_after = old_finish - pos;
if (elems_after > n){
//New elements can be just copied.
//Move to uninitialized memory last objects
std::uninitialized_copy(copy_move_it(old_finish - n), copy_move_it(old_finish), old_finish);
this->members_.m_size += n;
//Copy previous to last objects to the initialized end
std::copy_backward(assign_move_it(pos), assign_move_it(old_finish - n), old_finish);
//Insert new objects in the pos
interf.copy_all_to(pos);
}
else {
//The new elements don't fit in the [pos, end()) range. Copy
//to the beginning of the unallocated zone the last new elements.
interf.uninitialized_copy_some_and_update(old_finish, elems_after, false);
this->members_.m_size += n - elems_after;
//Copy old [pos, end()) elements to the uninitialized memory
std::uninitialized_copy
( copy_move_it(pos), copy_move_it(old_finish)
, detail::get_pointer(this->members_.m_start) + this->members_.m_size);
this->members_.m_size += elems_after;
//Copy first new elements in pos
interf.copy_all_to(pos);
}
}
void priv_range_insert_new_allocation
(T* new_start, size_type new_cap, T* pos, size_type n, advanced_insert_aux_int_t &interf)
{
typedef typename value_traits::copy_move_it copy_move_it;
T* new_finish = new_start;
T *old_finish;
//Anti-exception rollbacks
typename value_traits::UCopiedArrayDeallocator scoped_alloc(new_start, this->alloc(), new_cap);
typename value_traits::UCopiedArrayDestructor constructed_values_destroyer(new_start, 0u);
//Initialize with [begin(), pos) old buffer
//the start of the new buffer
new_finish = std::uninitialized_copy
( copy_move_it(detail::get_pointer(this->members_.m_start))
, copy_move_it(pos)
, old_finish = new_finish);
constructed_values_destroyer.increment_size(new_finish - old_finish);
//Initialize new objects, starting from previous point
interf.uninitialized_copy_all_to(old_finish = new_finish);
new_finish += n;
constructed_values_destroyer.increment_size(new_finish - old_finish);
//Initialize from the rest of the old buffer,
//starting from previous point
new_finish = std::uninitialized_copy
( copy_move_it(pos)
, copy_move_it(detail::get_pointer(this->members_.m_start) + this->members_.m_size)
, new_finish);
//All construction successful, disable rollbacks
constructed_values_destroyer.release();
scoped_alloc.release();
//Destroy and deallocate old elements
//If there is allocated memory, destroy and deallocate
if(this->members_.m_start != 0){
if(!value_traits::trivial_dctr_after_move)
this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size);
this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity);
}
this->members_.m_start = new_start;
this->members_.m_size = new_finish - new_start;
this->members_.m_capacity = new_cap;
}
void priv_range_insert_expand_backwards
(T* new_start, size_type new_capacity,
T* pos, const size_type n, advanced_insert_aux_int_t &interf)
{
typedef typename value_traits::copy_move_it copy_move_it;
typedef typename value_traits::assign_move_it assign_move_it;
//Backup old data
T* old_start = detail::get_pointer(this->members_.m_start);
T* old_finish = old_start + this->members_.m_size;
size_type old_size = this->members_.m_size;
//We can have 8 possibilities:
const size_type elemsbefore = (size_type)(pos - old_start);
const size_type s_before = (size_type)(old_start - new_start);
//Update the vector buffer information to a safe state
this->members_.m_start = new_start;
this->members_.m_capacity = new_capacity;
this->members_.m_size = 0;
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
typename value_traits::OldArrayDestructor old_values_destroyer(old_start, old_size);
//Check if s_before is big enough to hold the beginning of old data + new data
if(difference_type(s_before) >= difference_type(elemsbefore + n)){
//Copy first old values before pos, after that the new objects
std::uninitialized_copy(copy_move_it(old_start), copy_move_it(pos), new_start);
this->members_.m_size = elemsbefore;
interf.uninitialized_copy_all_to(new_start + elemsbefore);
this->members_.m_size += n;
//Check if s_before is so big that even copying the old data + new data
//there is a gap between the new data and the old data
if(s_before >= (old_size + n)){
//Old situation:
// _________________________________________________________
//| raw_mem | old_begin | old_end |
//| __________________________________|___________|_________|
//
//New situation:
// _________________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|________________________|
//
//Now initialize the rest of memory with the last old values
std::uninitialized_copy
(copy_move_it(pos), copy_move_it(old_finish), new_start + elemsbefore + n);
//All new elements correctly constructed, avoid new element destruction
this->members_.m_size = old_size + n;
//Old values destroyed automatically with "old_values_destroyer"
//when "old_values_destroyer" goes out of scope unless the have trivial
//destructor after move.
if(value_traits::trivial_dctr_after_move)
old_values_destroyer.release();
}
//s_before is so big that divides old_end
else{
//Old situation:
// __________________________________________________
//| raw_mem | old_begin | old_end |
//| ___________________________|___________|_________|
//
//New situation:
// __________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|_________________|
//
//Now initialize the rest of memory with the last old values
//All new elements correctly constructed, avoid new element destruction
size_type raw_gap = s_before - (elemsbefore + n);
//Now initialize the rest of s_before memory with the
//first of elements after new values
std::uninitialized_copy
(copy_move_it(pos), copy_move_it(pos + raw_gap), new_start + elemsbefore + n);
//Update size since we have a contiguous buffer
this->members_.m_size = old_size + s_before;
//All new elements correctly constructed, avoid old element destruction
old_values_destroyer.release();
//Now copy remaining last objects in the old buffer begin
T *to_destroy = std::copy(assign_move_it(pos + raw_gap), assign_move_it(old_finish), old_start);
//Now destroy redundant elements except if they were moved and
//they have trivial destructor after move
size_type n_destroy = old_finish - to_destroy;
if(!value_traits::trivial_dctr_after_move)
this->destroy_n(to_destroy, n_destroy);
this->members_.m_size -= n_destroy;
}
}
else{
//Check if we have to do the insertion in two phases
//since maybe s_before is not big enough and
//the buffer was expanded both sides
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin + old_end | raw_mem |
//|_________|_____________________|_________________|
//
//New situation with do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|___________________________________|_____________|
//
//New without do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|____________________________|____________________|
//
bool do_after = n > s_before;
//Now we can have two situations: the raw_mem of the
//beginning divides the old_begin, or the new elements:
if (s_before <= elemsbefore) {
//The raw memory divides the old_begin group:
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_________|___________|_________|_________________|
//
//New situation with do_after(1):
//This is not definitive situation, the second phase
//will include
// _________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_________|_________|_________________|
//
//New situation without do_after:
// _________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|_____________________|
//
//Copy the first part of old_begin to raw_mem
T *start_n = old_start + difference_type(s_before);
std::uninitialized_copy(copy_move_it(old_start), copy_move_it(start_n), new_start);
//The buffer is all constructed until old_end,
//release destroyer and update size
old_values_destroyer.release();
this->members_.m_size = old_size + s_before;
//Now copy the second part of old_begin overwriting himself
T* next = std::copy(assign_move_it(start_n), assign_move_it(pos), old_start);
if(do_after){
//Now copy the new_beg elements
interf.copy_some_and_update(next, s_before, true);
}
else{
//Now copy the all the new elements
interf.copy_all_to(next);
T* move_start = next + n;
//Now displace old_end elements
T* move_end = std::copy(assign_move_it(pos), assign_move_it(old_finish), move_start);
//Destroy remaining moved elements from old_end except if
//they have trivial destructor after being moved
difference_type n_destroy = s_before - n;
if(!value_traits::trivial_dctr_after_move)
this->destroy_n(move_end, n_destroy);
this->members_.m_size -= n_destroy;
}
}
else {
//If we have to expand both sides,
//we will play if the first new values so
//calculate the upper bound of new values
//The raw memory divides the new elements
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_______________|___________|_________|_________________|
//
//New situation with do_after():
// ____________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_______________|_________|______________|
//
//New situation without do_after:
// ______________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|__________________________|
//
//First copy whole old_begin and part of new to raw_mem
std::uninitialized_copy(copy_move_it(old_start), copy_move_it(pos), new_start);
this->members_.m_size = elemsbefore;
const size_type mid_n = difference_type(s_before) - elemsbefore;
interf.uninitialized_copy_some_and_update(new_start + elemsbefore, mid_n, true);
this->members_.m_size = old_size + s_before;
//The buffer is all constructed until old_end,
//release destroyer and update size
old_values_destroyer.release();
if(do_after){
//Copy new_beg part
interf.copy_some_and_update(old_start, s_before - mid_n, true);
}
else{
//Copy all new elements
interf.copy_all_to(old_start);
T* move_start = old_start + (n-mid_n);
//Displace old_end
T* move_end = std::copy(copy_move_it(pos), copy_move_it(old_finish), move_start);
//Destroy remaining moved elements from old_end except if they
//have trivial destructor after being moved
difference_type n_destroy = s_before - n;
if(!value_traits::trivial_dctr_after_move)
this->destroy_n(move_end, n_destroy);
this->members_.m_size -= n_destroy;
}
}
//This is only executed if two phase construction is needed
//This can be executed without exception handling since we
//have to just copy and append in raw memory and
//old_values_destroyer has been released in phase 1.
if(do_after){
//The raw memory divides the new elements
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//New situation with do_after(2):
// ______________________________________________________
//| old_begin + new | old_end |raw |
//|_______________________________________|_________|____|
//
const size_type n_after = n - s_before;
const difference_type elemsafter = old_size - elemsbefore;
//We can have two situations:
if (elemsafter > difference_type(n_after)){
//The raw_mem from end will divide displaced old_end
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//First copy the part of old_end raw_mem
T* finish_n = old_finish - difference_type(n_after);
std::uninitialized_copy
(copy_move_it(finish_n), copy_move_it(old_finish), old_finish);
this->members_.m_size += n_after;
//Displace the rest of old_end to the new position
std::copy_backward(assign_move_it(pos), assign_move_it(finish_n), old_finish);
//Now overwrite with new_end
//The new_end part is [first + (n - n_after), last)
interf.copy_all_to(pos);
}
else {
//The raw_mem from end will divide new_end part
//
//Old situation:
// _____________________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|_____________________|
//
//New situation with do_after(2):
// _____________________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_______________|________|_________|
//
size_type mid_last_dist = n_after - elemsafter;
//First initialize data in raw memory
//The new_end part is [first + (n - n_after), last)
interf.uninitialized_copy_some_and_update(old_finish, elemsafter, false);
this->members_.m_size += mid_last_dist;
std::uninitialized_copy(copy_move_it(pos), copy_move_it(old_finish), old_finish + mid_last_dist);
this->members_.m_size += n_after - mid_last_dist;
//Now copy the part of new_end over constructed elements
interf.copy_all_to(pos);
}
}
}
}
template <class InIt>
void priv_range_insert(const_iterator pos, InIt first, InIt last, std::input_iterator_tag)
{
for(;first != last; ++first){
this->insert(pos, detail::move_impl(value_type(*first)));
}
}
template <class InIt>
void priv_assign_aux(InIt first, InIt last, std::input_iterator_tag)
{
//Overwrite all elements we can from [first, last)
iterator cur = begin();
for ( ; first != last && cur != end(); ++cur, ++first){
*cur = *first;
}
if (first == last){
//There are no more elements in the sequence, erase remaining
this->erase(cur, cend());
}
else{
//There are more elements in the range, insert the remaining ones
this->insert(this->cend(), first, last);
}
}
template <class FwdIt>
void priv_assign_aux(FwdIt first, FwdIt last,
std::forward_iterator_tag)
{
size_type n = std::distance(first, last);
//Check if we have enough memory or try to expand current memory
size_type remaining = this->members_.m_capacity - this->members_.m_size;
bool same_buffer_start;
std::pair<pointer, bool> ret;
size_type real_cap = this->members_.m_capacity;
if (n <= remaining){
same_buffer_start = true;
}
else{
//There is not enough memory, allocate a new buffer
size_type new_cap = this->next_capacity(n);
ret = this->allocation_command
(allocate_new | expand_fwd | expand_bwd,
this->size() + n, new_cap, real_cap, this->members_.m_start);
same_buffer_start = ret.second && this->members_.m_start == ret.first;
if(same_buffer_start){
this->members_.m_capacity = real_cap;
}
}
if(same_buffer_start){
T *start = detail::get_pointer(this->members_.m_start);
if (this->size() >= n){
//There is memory, but there are more old elements than new ones
//Overwrite old elements with new ones
std::copy(first, last, start);
//Destroy remaining old elements
this->destroy_n(start + n, this->members_.m_size - n);
this->members_.m_size = n;
}
else{
//There is memory, but there are less old elements than new ones
//First overwrite some old elements with new ones
FwdIt mid = first;
std::advance(mid, this->size());
T *end = std::copy(first, mid, start);
//Initialize the remaining new elements in the uninitialized memory
std::uninitialized_copy(mid, last, end);
this->members_.m_size = n;
}
}
else if(!ret.second){
typename value_traits::UCopiedArrayDeallocator scoped_alloc(ret.first, this->alloc(), real_cap);
std::uninitialized_copy(first, last, detail::get_pointer(ret.first));
scoped_alloc.release();
//Destroy and deallocate old buffer
if(this->members_.m_start != 0){
this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size);
this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity);
}
this->members_.m_start = ret.first;
this->members_.m_size = n;
this->members_.m_capacity = real_cap;
}
else{
//Backwards expansion
//If anything goes wrong, this object will destroy old objects
T *old_start = detail::get_pointer(this->members_.m_start);
size_type old_size = this->members_.m_size;
typename value_traits::OldArrayDestructor old_values_destroyer(old_start, old_size);
//If something goes wrong size will be 0
//but holding the whole buffer
this->members_.m_size = 0;
this->members_.m_start = ret.first;
this->members_.m_capacity = real_cap;
//Backup old buffer data
size_type old_offset = old_start - detail::get_pointer(ret.first);
size_type first_count = min_value(n, old_offset);
FwdIt mid = first;
std::advance(mid, first_count);
std::uninitialized_copy(first, mid, detail::get_pointer(ret.first));
if(old_offset > n){
//All old elements will be destroyed by "old_values_destroyer"
this->members_.m_size = n;
}
else{
//We have constructed objects from the new begin until
//the old end so release the rollback destruction
old_values_destroyer.release();
this->members_.m_start = ret.first;
this->members_.m_size = first_count + old_size;
//Now overwrite the old values
size_type second_count = min_value(old_size, n - first_count);
FwdIt mid2 = mid;
std::advance(mid2, second_count);
std::copy(mid, mid2, old_start);
//Check if we still have to append elements in the
//uninitialized end
if(second_count == old_size){
std::copy(mid2, last, old_start + old_size);
}
else{
//We have to destroy some old values
this->destroy_n
(old_start + second_count, old_size - second_count);
this->members_.m_size = n;
}
this->members_.m_size = n;
}
}
}
template <class Integer>
void priv_assign_dispatch(Integer n, Integer val, detail::true_)
{ this->assign((size_type) n, (T) val); }
template <class InIt>
void priv_assign_dispatch(InIt first, InIt last, detail::false_)
{
//Dispatch depending on integer/iterator
typedef typename
std::iterator_traits<InIt>::iterator_category ItCat;
this->priv_assign_aux(first, last, ItCat());
}
template <class Integer>
void priv_insert_dispatch(const_iterator pos, Integer n, Integer val, detail::true_)
{ this->insert(pos, (size_type)n, (T)val); }
template <class InIt>
void priv_insert_dispatch(const_iterator pos, InIt first,
InIt last, detail::false_)
{
//Dispatch depending on integer/iterator
typedef typename
std::iterator_traits<InIt>::iterator_category ItCat;
this->priv_range_insert(pos.get_ptr(), first, last, ItCat());
}
void priv_check_range(size_type n) const
{
//If n is out of range, throw an out_of_range exception
if (n >= size())
throw std::out_of_range("vector::at");
}
#ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
public:
unsigned int num_expand_fwd;
unsigned int num_expand_bwd;
unsigned int num_shrink;
unsigned int num_alloc;
void reset_alloc_stats()
{ num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0; }
#endif
/// @endcond
};
template <class T, class A>
inline bool
operator==(const vector<T, A>& x, const vector<T, A>& y)
{
//Check first size and each element if needed
return x.size() == y.size() &&
std::equal(x.begin(), x.end(), y.begin());
}
template <class T, class A>
inline bool
operator!=(const vector<T, A>& x, const vector<T, A>& y)
{
//Check first size and each element if needed
return x.size() != y.size() ||
!std::equal(x.begin(), x.end(), y.begin());
}
template <class T, class A>
inline bool
operator<(const vector<T, A>& x, const vector<T, A>& y)
{
return std::lexicographical_compare(x.begin(), x.end(),
y.begin(), y.end());
}
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
template <class T, class A>
inline void swap(vector<T, A>& x, vector<T, A>& y)
{ x.swap(y); }
template <class T, class A>
inline void swap(detail::moved_object<vector<T, A> > x, vector<T, A>& y)
{ x.get().swap(y); }
template <class T, class A>
inline void swap(vector<T, A> &x, detail::moved_object<vector<T, A> > y)
{ x.swap(y.get()); }
#else
template <class T, class A>
inline void swap(vector<T, A>&&x, vector<T, A>&&y)
{ x.swap(y); }
#endif
/// @cond
//!This class is movable
template <class T, class A>
struct is_movable<vector<T, A> >
{
enum { value = true };
};
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class A>
struct has_trivial_destructor_after_move<vector<T, A> >
{
enum { value = has_trivial_destructor<A>::value };
};
/// @endcond
} //namespace interprocess {
} //namespace boost {
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_VECTOR_HPP