boost/unordered/unordered_map.hpp
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2008 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/unordered for documentation
#ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/unordered/unordered_map_fwd.hpp>
#include <boost/functional/hash.hpp>
#include <boost/unordered/detail/hash_table.hpp>
#if !defined(BOOST_HAS_RVALUE_REFS)
#include <boost/unordered/detail/move.hpp>
#endif
#if defined(BOOST_MSVC)
#pragma warning(push)
#if BOOST_MSVC >= 1400
#pragma warning(disable:4396) //the inline specifier cannot be used when a
// friend declaration refers to a specialization
// of a function template
#endif
#endif
namespace boost
{
template <class Key, class T, class Hash, class Pred, class Alloc>
class unordered_map
{
typedef boost::unordered_detail::hash_types_unique_keys<
std::pair<const Key, T>, Key, Hash, Pred, Alloc
> implementation;
BOOST_DEDUCED_TYPENAME implementation::hash_table base;
public:
// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef BOOST_DEDUCED_TYPENAME allocator_type::pointer pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_pointer const_pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::reference reference;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_reference const_reference;
typedef BOOST_DEDUCED_TYPENAME implementation::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME implementation::difference_type difference_type;
typedef BOOST_DEDUCED_TYPENAME implementation::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_local_iterator const_local_iterator;
// construct/destroy/copy
explicit unordered_map(
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(n, hf, eql, a)
{
}
explicit unordered_map(allocator_type const& a)
: base(boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), a)
{
}
unordered_map(unordered_map const& other, allocator_type const& a)
: base(other.base, a)
{
}
template <class InputIterator>
unordered_map(InputIterator f, InputIterator l)
: base(f, l, boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), allocator_type())
{
}
template <class InputIterator>
unordered_map(InputIterator f, InputIterator l,
size_type n,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(f, l, n, hf, eql, a)
{
}
#if defined(BOOST_HAS_RVALUE_REFS)
unordered_map(unordered_map&& other)
: base(other.base, boost::unordered_detail::move_tag())
{
}
unordered_map(unordered_map&& other, allocator_type const& a)
: base(other.base, a, boost::unordered_detail::move_tag())
{
}
unordered_map& operator=(unordered_map&& x)
{
base.move(x.base);
return *this;
}
#else
unordered_map(boost::unordered_detail::move_from<unordered_map<Key, T, Hash, Pred, Alloc> > other)
: base(other.source.base, boost::unordered_detail::move_tag())
{
}
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0593)
unordered_map& operator=(unordered_map x)
{
base.move(x.base);
return *this;
}
#endif
#endif
#if !defined(BOOST_NO_INITIALIZER_LISTS)
unordered_map(std::initializer_list<value_type> list,
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(list.begin(), list.end(), n, hf, eql, a)
{
}
unordered_map& operator=(std::initializer_list<value_type> list)
{
base.data_.clear();
base.insert_range(list.begin(), list.end());
return *this;
}
#endif
private:
BOOST_DEDUCED_TYPENAME implementation::iterator_base const&
get(const_iterator const& it)
{
return boost::unordered_detail::iterator_access::get(it);
}
public:
allocator_type get_allocator() const
{
return base.get_allocator();
}
// size and capacity
bool empty() const
{
return base.empty();
}
size_type size() const
{
return base.size();
}
size_type max_size() const
{
return base.max_size();
}
// iterators
iterator begin()
{
return iterator(base.data_.begin());
}
const_iterator begin() const
{
return const_iterator(base.data_.begin());
}
iterator end()
{
return iterator(base.data_.end());
}
const_iterator end() const
{
return const_iterator(base.data_.end());
}
const_iterator cbegin() const
{
return const_iterator(base.data_.begin());
}
const_iterator cend() const
{
return const_iterator(base.data_.end());
}
// modifiers
#if defined(BOOST_HAS_RVALUE_REFS) && defined(BOOST_HAS_VARIADIC_TMPL)
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args)
{
return boost::unordered_detail::pair_cast<iterator, bool>(
base.insert(std::forward<Args>(args)...));
}
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{
return iterator(base.insert_hint(get(hint), std::forward<Args>(args)...));
}
#endif
std::pair<iterator, bool> insert(const value_type& obj)
{
return boost::unordered_detail::pair_cast<iterator, bool>(
base.insert(obj));
}
iterator insert(const_iterator hint, const value_type& obj)
{
return iterator(base.insert_hint(get(hint), obj));
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
base.insert_range(first, last);
}
iterator erase(const_iterator position)
{
return iterator(base.data_.erase(get(position)));
}
size_type erase(const key_type& k)
{
return base.erase_key(k);
}
iterator erase(const_iterator first, const_iterator last)
{
return iterator(base.data_.erase_range(get(first), get(last)));
}
void clear()
{
base.data_.clear();
}
void swap(unordered_map& other)
{
base.swap(other.base);
}
// observers
hasher hash_function() const
{
return base.hash_function();
}
key_equal key_eq() const
{
return base.key_eq();
}
mapped_type& operator[](const key_type &k)
{
return base[k].second;
}
mapped_type& at(const key_type& k)
{
return base.at(k).second;
}
mapped_type const& at(const key_type& k) const
{
return base.at(k).second;
}
// lookup
iterator find(const key_type& k)
{
return iterator(base.find(k));
}
const_iterator find(const key_type& k) const
{
return const_iterator(base.find(k));
}
size_type count(const key_type& k) const
{
return base.count(k);
}
std::pair<iterator, iterator>
equal_range(const key_type& k)
{
return boost::unordered_detail::pair_cast<iterator, iterator>(
base.equal_range(k));
}
std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const
{
return boost::unordered_detail::pair_cast<const_iterator, const_iterator>(
base.equal_range(k));
}
// bucket interface
size_type bucket_count() const
{
return base.bucket_count();
}
size_type max_bucket_count() const
{
return base.max_bucket_count();
}
size_type bucket_size(size_type n) const
{
return base.data_.bucket_size(n);
}
size_type bucket(const key_type& k) const
{
return base.bucket(k);
}
local_iterator begin(size_type n)
{
return local_iterator(base.data_.begin(n));
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
local_iterator end(size_type n)
{
return local_iterator(base.data_.end(n));
}
const_local_iterator end(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
const_local_iterator cend(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
// hash policy
float load_factor() const
{
return base.load_factor();
}
float max_load_factor() const
{
return base.max_load_factor();
}
void max_load_factor(float m)
{
base.max_load_factor(m);
}
void rehash(size_type n)
{
base.rehash(n);
}
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
friend bool operator==(unordered_map const&, unordered_map const&);
friend bool operator!=(unordered_map const&, unordered_map const&);
#else
friend bool operator==<Key, T, Hash, Pred, Alloc>(unordered_map const&, unordered_map const&);
friend bool operator!=<Key, T, Hash, Pred, Alloc>(unordered_map const&, unordered_map const&);
#endif
}; // class template unordered_map
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_map<K, T, H, P, A> const& m1,
unordered_map<K, T, H, P, A> const& m2)
{
return boost::unordered_detail::equals(m1.base, m2.base);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_map<K, T, H, P, A> const& m1,
unordered_map<K, T, H, P, A> const& m2)
{
return !boost::unordered_detail::equals(m1.base, m2.base);
}
template <class K, class T, class H, class P, class A>
inline void swap(unordered_map<K, T, H, P, A> &m1,
unordered_map<K, T, H, P, A> &m2)
{
m1.swap(m2);
}
template <class Key, class T, class Hash, class Pred, class Alloc>
class unordered_multimap
{
typedef boost::unordered_detail::hash_types_equivalent_keys<
std::pair<const Key, T>, Key, Hash, Pred, Alloc
> implementation;
BOOST_DEDUCED_TYPENAME implementation::hash_table base;
public:
// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef BOOST_DEDUCED_TYPENAME allocator_type::pointer pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_pointer const_pointer;
typedef BOOST_DEDUCED_TYPENAME allocator_type::reference reference;
typedef BOOST_DEDUCED_TYPENAME allocator_type::const_reference const_reference;
typedef BOOST_DEDUCED_TYPENAME implementation::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME implementation::difference_type difference_type;
typedef BOOST_DEDUCED_TYPENAME implementation::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME implementation::const_local_iterator const_local_iterator;
// construct/destroy/copy
explicit unordered_multimap(
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(n, hf, eql, a)
{
}
explicit unordered_multimap(allocator_type const& a)
: base(boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), a)
{
}
unordered_multimap(unordered_multimap const& other, allocator_type const& a)
: base(other.base, a)
{
}
template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l)
: base(f, l, boost::unordered_detail::default_initial_bucket_count,
hasher(), key_equal(), allocator_type())
{
}
template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,
size_type n,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(f, l, n, hf, eql, a)
{
}
#if defined(BOOST_HAS_RVALUE_REFS)
unordered_multimap(unordered_multimap&& other)
: base(other.base, boost::unordered_detail::move_tag())
{
}
unordered_multimap(unordered_multimap&& other, allocator_type const& a)
: base(other.base, a, boost::unordered_detail::move_tag())
{
}
unordered_multimap& operator=(unordered_multimap&& x)
{
base.move(x.base);
return *this;
}
#else
unordered_multimap(boost::unordered_detail::move_from<unordered_multimap<Key, T, Hash, Pred, Alloc> > other)
: base(other.source.base, boost::unordered_detail::move_tag())
{
}
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0593)
unordered_multimap& operator=(unordered_multimap x)
{
base.move(x.base);
return *this;
}
#endif
#endif
#if !defined(BOOST_NO_INITIALIZER_LISTS)
unordered_multimap(std::initializer_list<value_type> list,
size_type n = boost::unordered_detail::default_initial_bucket_count,
const hasher &hf = hasher(),
const key_equal &eql = key_equal(),
const allocator_type &a = allocator_type())
: base(list.begin(), list.end(), n, hf, eql, a)
{
}
unordered_multimap& operator=(std::initializer_list<value_type> list)
{
base.data_.clear();
base.insert_range(list.begin(), list.end());
return *this;
}
#endif
private:
BOOST_DEDUCED_TYPENAME implementation::iterator_base const&
get(const_iterator const& it)
{
return boost::unordered_detail::iterator_access::get(it);
}
public:
allocator_type get_allocator() const
{
return base.get_allocator();
}
// size and capacity
bool empty() const
{
return base.empty();
}
size_type size() const
{
return base.size();
}
size_type max_size() const
{
return base.max_size();
}
// iterators
iterator begin()
{
return iterator(base.data_.begin());
}
const_iterator begin() const
{
return const_iterator(base.data_.begin());
}
iterator end()
{
return iterator(base.data_.end());
}
const_iterator end() const
{
return const_iterator(base.data_.end());
}
const_iterator cbegin() const
{
return const_iterator(base.data_.begin());
}
const_iterator cend() const
{
return const_iterator(base.data_.end());
}
// modifiers
#if defined(BOOST_HAS_RVALUE_REFS) && defined(BOOST_HAS_VARIADIC_TMPL)
template <class... Args>
iterator emplace(Args&&... args)
{
return iterator(base.insert(std::forward<Args>(args)...));
}
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{
return iterator(base.insert_hint(get(hint), std::forward<Args>(args)...));
}
#endif
iterator insert(const value_type& obj)
{
return iterator(base.insert(obj));
}
iterator insert(const_iterator hint, const value_type& obj)
{
return iterator(base.insert_hint(get(hint), obj));
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
base.insert_range(first, last);
}
iterator erase(const_iterator position)
{
return iterator(base.data_.erase(get(position)));
}
size_type erase(const key_type& k)
{
return base.erase_key(k);
}
iterator erase(const_iterator first, const_iterator last)
{
return iterator(base.data_.erase_range(get(first), get(last)));
}
void clear()
{
base.data_.clear();
}
void swap(unordered_multimap& other)
{
base.swap(other.base);
}
// observers
hasher hash_function() const
{
return base.hash_function();
}
key_equal key_eq() const
{
return base.key_eq();
}
// lookup
iterator find(const key_type& k)
{
return iterator(base.find(k));
}
const_iterator find(const key_type& k) const
{
return const_iterator(base.find(k));
}
size_type count(const key_type& k) const
{
return base.count(k);
}
std::pair<iterator, iterator>
equal_range(const key_type& k)
{
return boost::unordered_detail::pair_cast<iterator, iterator>(
base.equal_range(k));
}
std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const
{
return boost::unordered_detail::pair_cast<const_iterator, const_iterator>(
base.equal_range(k));
}
// bucket interface
size_type bucket_count() const
{
return base.bucket_count();
}
size_type max_bucket_count() const
{
return base.max_bucket_count();
}
size_type bucket_size(size_type n) const
{
return base.data_.bucket_size(n);
}
size_type bucket(const key_type& k) const
{
return base.bucket(k);
}
local_iterator begin(size_type n)
{
return local_iterator(base.data_.begin(n));
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
local_iterator end(size_type n)
{
return local_iterator(base.data_.end(n));
}
const_local_iterator end(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(base.data_.begin(n));
}
const_local_iterator cend(size_type n) const
{
return const_local_iterator(base.data_.end(n));
}
// hash policy
float load_factor() const
{
return base.load_factor();
}
float max_load_factor() const
{
return base.max_load_factor();
}
void max_load_factor(float m)
{
base.max_load_factor(m);
}
void rehash(size_type n)
{
base.rehash(n);
}
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
friend bool operator==(unordered_multimap const&, unordered_multimap const&);
friend bool operator!=(unordered_multimap const&, unordered_multimap const&);
#else
friend bool operator==<Key, T, Hash, Pred, Alloc>(unordered_multimap const&, unordered_multimap const&);
friend bool operator!=<Key, T, Hash, Pred, Alloc>(unordered_multimap const&, unordered_multimap const&);
#endif
}; // class template unordered_multimap
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_multimap<K, T, H, P, A> const& m1,
unordered_multimap<K, T, H, P, A> const& m2)
{
return boost::unordered_detail::equals(m1.base, m2.base);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_multimap<K, T, H, P, A> const& m1,
unordered_multimap<K, T, H, P, A> const& m2)
{
return !boost::unordered_detail::equals(m1.base, m2.base);
}
template <class K, class T, class H, class P, class A>
inline void swap(unordered_multimap<K, T, H, P, A> &m1,
unordered_multimap<K, T, H, P, A> &m2)
{
m1.swap(m2);
}
} // namespace boost
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED