boost/interprocess/containers/container/list.hpp
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2009. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // #ifndef BOOST_CONTAINERS_LIST_HPP_ #define BOOST_CONTAINERS_LIST_HPP_ #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include "detail/config_begin.hpp" #include INCLUDE_BOOST_CONTAINER_DETAIL_WORKAROUND_HPP #include INCLUDE_BOOST_CONTAINER_CONTAINER_FWD_HPP #include INCLUDE_BOOST_CONTAINER_DETAIL_VERSION_TYPE_HPP #include INCLUDE_BOOST_CONTAINER_MOVE_HPP #include <boost/pointer_to_other.hpp> #include INCLUDE_BOOST_CONTAINER_DETAIL_UTILITIES_HPP #include INCLUDE_BOOST_CONTAINER_DETAIL_ALGORITHMS_HPP #include <boost/type_traits/has_trivial_destructor.hpp> #include INCLUDE_BOOST_CONTAINER_DETAIL_MPL_HPP #include <boost/intrusive/list.hpp> #include INCLUDE_BOOST_CONTAINER_DETAIL_NODE_ALLOC_HOLDER_HPP #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #else //Preprocessor library to emulate perfect forwarding #include INCLUDE_BOOST_CONTAINER_DETAIL_PREPROCESSOR_HPP #endif #include <stdexcept> #include <iterator> #include <utility> #include <memory> #include <functional> #include <algorithm> #include <stdexcept> #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { #else namespace boost { namespace container { #endif /// @cond namespace containers_detail { template<class VoidPointer> struct list_hook { typedef typename containers_detail::bi::make_list_base_hook <containers_detail::bi::void_pointer<VoidPointer>, containers_detail::bi::link_mode<containers_detail::bi::normal_link> >::type type; }; template <class T, class VoidPointer> struct list_node : public list_hook<VoidPointer>::type { #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) list_node() : m_data() {} template<class ...Args> list_node(Args &&...args) : m_data(BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...) {} #else //#ifndef BOOST_CONTAINERS_PERFECT_FORWARDING list_node() : m_data() {} #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ list_node(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ : m_data(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)) \ {} \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif//#ifndef BOOST_CONTAINERS_PERFECT_FORWARDING T m_data; }; template<class A> struct intrusive_list_type { typedef typename A::value_type value_type; typedef typename boost::pointer_to_other <typename A::pointer, void>::type void_pointer; typedef typename containers_detail::list_node <value_type, void_pointer> node_type; typedef typename containers_detail::bi::make_list < node_type , containers_detail::bi::base_hook<typename list_hook<void_pointer>::type> , containers_detail::bi::constant_time_size<true> , containers_detail::bi::size_type<typename A::size_type> >::type container_type; typedef container_type type ; }; } //namespace containers_detail { /// @endcond //! A list is a doubly linked list. That is, it is a Sequence that supports both //! forward and backward traversal, and (amortized) constant time insertion and //! removal of elements at the beginning or the end, or in the middle. Lists have //! the important property that insertion and splicing do not invalidate iterators //! to list elements, and that even removal invalidates only the iterators that point //! to the elements that are removed. The ordering of iterators may be changed //! (that is, list<T>::iterator might have a different predecessor or successor //! after a list operation than it did before), but the iterators themselves will //! not be invalidated or made to point to different elements unless that invalidation //! or mutation is explicit. template <class T, class A> class list : protected containers_detail::node_alloc_holder <A, typename containers_detail::intrusive_list_type<A>::type> { /// @cond typedef typename containers_detail:: move_const_ref_type<T>::type insert_const_ref_type; typedef typename containers_detail::intrusive_list_type<A>::type Icont; typedef list <T, A> ThisType; typedef containers_detail::node_alloc_holder<A, Icont> AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef containers_detail::allocator_destroyer<NodeAlloc> Destroyer; typedef typename AllocHolder::allocator_v1 allocator_v1; typedef typename AllocHolder::allocator_v2 allocator_v2; typedef typename AllocHolder::alloc_version alloc_version; class equal_to_value { typedef typename AllocHolder::value_type value_type; const value_type &t_; public: equal_to_value(const value_type &t) : t_(t) {} bool operator()(const value_type &t)const { return t_ == t; } }; template<class Pred> struct ValueCompareToNodeCompare : Pred { ValueCompareToNodeCompare(Pred pred) : Pred(pred) {} bool operator()(const Node &a, const Node &b) const { return static_cast<const Pred&>(*this)(a.m_data, b.m_data); } bool operator()(const Node &a) const { return static_cast<const Pred&>(*this)(a.m_data); } }; /// @endcond public: //! The type of object, T, stored in the list typedef T value_type; //! Pointer to T typedef typename A::pointer pointer; //! Const pointer to T typedef typename A::const_pointer const_pointer; //! Reference to T typedef typename A::reference reference; //! Const reference to T typedef typename A::const_reference const_reference; //! An unsigned integral type typedef typename A::size_type size_type; //! A signed integral type typedef typename A::difference_type difference_type; //! The allocator type typedef A allocator_type; //! The stored allocator type typedef NodeAlloc stored_allocator_type; /// @cond private: BOOST_MOVE_MACRO_COPYABLE_AND_MOVABLE(list) typedef difference_type list_difference_type; typedef pointer list_pointer; typedef const_pointer list_const_pointer; typedef reference list_reference; typedef const_reference list_const_reference; /// @endcond public: //! Const iterator used to iterate through a list. class const_iterator /// @cond : public std::iterator<std::bidirectional_iterator_tag, value_type, list_difference_type, list_const_pointer, list_const_reference> { protected: typename Icont::iterator m_it; explicit const_iterator(typename Icont::iterator it) : m_it(it){} void prot_incr() { ++m_it; } void prot_decr() { --m_it; } private: typename Icont::iterator get() { return this->m_it; } public: friend class list<T, A>; typedef list_difference_type difference_type; //Constructors const_iterator() : m_it() {} //Pointer like operators const_reference operator*() const { return m_it->m_data; } const_pointer operator->() const { return const_pointer(&m_it->m_data); } //Increment / Decrement const_iterator& operator++() { prot_incr(); return *this; } const_iterator operator++(int) { typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp); } const_iterator& operator--() { prot_decr(); return *this; } const_iterator operator--(int) { typename Icont::iterator tmp = m_it; --*this; return const_iterator(tmp); } //Comparison operators bool operator== (const const_iterator& r) const { return m_it == r.m_it; } bool operator!= (const const_iterator& r) const { return m_it != r.m_it; } } /// @endcond ; //! Iterator used to iterate through a list class iterator /// @cond : public const_iterator { private: explicit iterator(typename Icont::iterator it) : const_iterator(it) {} typename Icont::iterator get() { return this->m_it; } public: friend class list<T, A>; typedef list_pointer pointer; typedef list_reference reference; //Constructors iterator(){} //Pointer like operators reference operator*() const { return this->m_it->m_data; } pointer operator->() const { return pointer(&this->m_it->m_data); } //Increment / Decrement iterator& operator++() { this->prot_incr(); return *this; } iterator operator++(int) { typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); } iterator& operator--() { this->prot_decr(); return *this; } iterator operator--(int) { iterator tmp = *this; --*this; return tmp; } }; /// @endcond //! Iterator used to iterate backwards through a list. typedef std::reverse_iterator<iterator> reverse_iterator; //! Const iterator used to iterate backwards through a list. typedef std::reverse_iterator<const_iterator> const_reverse_iterator; //! <b>Effects</b>: Constructs a list taking the allocator as parameter. //! //! <b>Throws</b>: If allocator_type's copy constructor throws. //! //! <b>Complexity</b>: Constant. explicit list(const allocator_type &a = A()) : AllocHolder(a) {} //! <b>Effects</b>: Constructs a list that will use a copy of allocator a //! and inserts n copies of value. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! <b>Complexity</b>: Linear to n. list(size_type n) : AllocHolder(A()) { this->resize(n); } //! <b>Effects</b>: Constructs a list that will use a copy of allocator a //! and inserts n copies of value. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! <b>Complexity</b>: Linear to n. list(size_type n, const T& value, const A& a = A()) : AllocHolder(a) { this->insert(this->cbegin(), n, value); } //! <b>Effects</b>: Copy constructs a list. //! //! <b>Postcondition</b>: x == *this. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws. //! //! <b>Complexity</b>: Linear to the elements x contains. list(const list& x) : AllocHolder(x) { this->insert(this->cbegin(), x.begin(), x.end()); } //! <b>Effects</b>: Move constructor. Moves mx's resources to *this. //! //! <b>Throws</b>: If allocator_type's copy constructor throws. //! //! <b>Complexity</b>: Constant. list(BOOST_MOVE_MACRO_RV_REF(list) x) : AllocHolder(BOOST_CONTAINER_MOVE_NAMESPACE::move(static_cast<AllocHolder&>(x))) {} //! <b>Effects</b>: Constructs a list that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the list. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor //! throws or T's constructor taking an dereferenced InIt throws. //! //! <b>Complexity</b>: Linear to the range [first, last). template <class InpIt> list(InpIt first, InpIt last, const A &a = A()) : AllocHolder(a) { this->insert(this->cbegin(), first, last); } //! <b>Effects</b>: Destroys the list. All stored values are destroyed //! and used memory is deallocated. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements. ~list() {} //AllocHolder clears the list //! <b>Effects</b>: Returns a copy of the internal allocator. //! //! <b>Throws</b>: If allocator's copy constructor throws. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } //! <b>Effects</b>: Erases all the elements of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements in the list. void clear() { AllocHolder::clear(alloc_version()); } //! <b>Effects</b>: Returns an iterator to the first element contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() { return iterator(this->icont().begin()); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return this->cbegin(); } //! <b>Effects</b>: Returns an iterator to the end of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() { return iterator(this->icont().end()); } //! <b>Effects</b>: Returns a const_iterator to the end of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const { return this->cend(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() { return reverse_iterator(end()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const { return this->crbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() { return reverse_iterator(begin()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const { return this->crend(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const { return const_iterator(this->non_const_icont().begin()); } //! <b>Effects</b>: Returns a const_iterator to the end of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const { return const_iterator(this->non_const_icont().end()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const { return const_reverse_iterator(this->cend()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const { return const_reverse_iterator(this->cbegin()); } //! <b>Effects</b>: Returns true if the list contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return !this->size(); } //! <b>Effects</b>: Returns the number of the elements contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return this->icont().size(); } //! <b>Effects</b>: Returns the largest possible size of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return AllocHolder::max_size(); } //! <b>Effects</b>: Inserts a copy of t in the beginning of the list. //! //! <b>Throws</b>: If memory allocation throws or //! T's copy constructor throws. //! //! <b>Complexity</b>: Amortized constant time. void push_front(insert_const_ref_type x) { this->insert(this->cbegin(), x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) void push_front(T &x) { push_front(const_cast<const T &>(x)); } template<class U> void push_front(const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::BOOST_CONTAINER_MOVE_NAMESPACE::is_movable<U>::value >::type* =0) { this->insert(this->cbegin(), u); } #endif //! <b>Effects</b>: Constructs a new element in the beginning of the list //! and moves the resources of t to this new element. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Amortized constant time. void push_front(BOOST_MOVE_MACRO_RV_REF(T) x) { this->insert(this->cbegin(), BOOST_CONTAINER_MOVE_NAMESPACE::move(x)); } //! <b>Effects</b>: Removes the last element from the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Amortized constant time. void push_back (insert_const_ref_type x) { this->insert(this->cend(), x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) void push_back(T &x) { push_back(const_cast<const T &>(x)); } template<class U> void push_back(const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::BOOST_CONTAINER_MOVE_NAMESPACE::is_movable<U>::value >::type* =0) { this->insert(this->cend(), u); } #endif //! <b>Effects</b>: Removes the first element from the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Amortized constant time. void push_back (BOOST_MOVE_MACRO_RV_REF(T) x) { this->insert(this->cend(), BOOST_CONTAINER_MOVE_NAMESPACE::move(x)); } //! <b>Effects</b>: Removes the first element from the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Amortized constant time. void pop_front() { this->erase(this->cbegin()); } //! <b>Effects</b>: Removes the last element from the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Amortized constant time. void pop_back() { const_iterator tmp = this->cend(); this->erase(--tmp); } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a reference to the first element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reference front() { return *this->begin(); } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a const reference to the first element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reference front() const { return *this->begin(); } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a reference to the first element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reference back() { return *(--this->end()); } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a const reference to the first element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reference back() const { return *(--this->end()); } //! <b>Effects</b>: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { const_iterator iend = this->cend(); size_type len = this->size(); if(len > new_size){ size_type to_erase = len - new_size; while(to_erase--){ --iend; } this->erase(iend, this->cend()); } else{ this->priv_create_and_insert_nodes(iend, new_size - len, x); } } //! <b>Effects</b>: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the difference between size() and new_size. void resize(size_type new_size) { const_iterator iend = this->end(); size_type len = this->size(); if(len > new_size){ size_type to_erase = len - new_size; const_iterator ifirst; if(to_erase < len/2u){ ifirst = iend; while(to_erase--){ --ifirst; } } else{ ifirst = this->begin(); size_type to_skip = len - to_erase; while(to_skip--){ ++ifirst; } } this->erase(ifirst, iend); } else{ this->priv_create_and_insert_nodes(this->cend(), new_size - len); } } //! <b>Effects</b>: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() //! allocators are also swapped. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. void swap(ThisType& x) { AllocHolder::swap(x); } //! <b>Effects</b>: Makes *this contain the same elements as x. //! //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the number of elements in x. ThisType& operator=(BOOST_MOVE_MACRO_COPY_ASSIGN_REF(ThisType) x) { if (this != &x) { this->assign(x.begin(), x.end()); } return *this; } //! <b>Effects</b>: Move assignment. All mx's values are transferred to *this. //! //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had //! before the function. //! //! <b>Throws</b>: If allocator_type's copy constructor throws. //! //! <b>Complexity</b>: Constant. ThisType& operator=(BOOST_MOVE_MACRO_RV_REF(ThisType) mx) { this->clear(); this->swap(mx); return *this; } //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Inserts n copies of x before p. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n. void insert(const_iterator p, size_type n, const T& x) { this->priv_create_and_insert_nodes(p, n, x); } //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a copy of the [first, last) range before p. //! //! <b>Throws</b>: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws. //! //! <b>Complexity</b>: Linear to std::distance [first, last). template <class InpIt> void insert(const_iterator p, InpIt first, InpIt last) { const bool aux_boolean = containers_detail::is_convertible<InpIt, std::size_t>::value; typedef containers_detail::bool_<aux_boolean> Result; this->priv_insert_dispatch(p, first, last, Result()); } //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a copy of x before p. //! //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws. //! //! <b>Complexity</b>: Amortized constant time. iterator insert(const_iterator position, insert_const_ref_type x) { return this->priv_insert(position, x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) iterator insert(const_iterator position, T &x) { return this->insert(position, const_cast<const T &>(x)); } template<class U> iterator insert(const_iterator position, const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::BOOST_CONTAINER_MOVE_NAMESPACE::is_movable<U>::value >::type* =0) { return this->priv_insert(position, u); } #endif //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a new element before p with mx's resources. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Amortized constant time. iterator insert(const_iterator p, BOOST_MOVE_MACRO_RV_REF(T) x) { NodePtr tmp = AllocHolder::create_node(BOOST_CONTAINER_MOVE_NAMESPACE::move(x)); return iterator(this->icont().insert(p.get(), *tmp)); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the end of the list. //! //! <b>Throws</b>: If memory allocation throws or //! T's in-place constructor throws. //! //! <b>Complexity</b>: Constant template <class... Args> void emplace_back(Args&&... args) { this->emplace(this->cend(), BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the beginning of the list. //! //! <b>Throws</b>: If memory allocation throws or //! T's in-place constructor throws. //! //! <b>Complexity</b>: Constant template <class... Args> void emplace_front(Args&&... args) { this->emplace(this->cbegin(), BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... before p. //! //! <b>Throws</b>: If memory allocation throws or //! T's in-place constructor throws. //! //! <b>Complexity</b>: Constant template <class... Args> iterator emplace(const_iterator p, Args&&... args) { typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator()); new ((void*)containers_detail::get_pointer(d.get())) Node(BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...); NodePtr node = d.get(); d.release(); return iterator(this->icont().insert(p.get(), *node)); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //0 args void emplace_back() { this->emplace(this->cend()); } void emplace_front() { this->emplace(this->cbegin()); } iterator emplace(const_iterator p) { typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator()); new ((void*)containers_detail::get_pointer(d.get())) Node(); NodePtr node = d.get(); d.release(); return iterator(this->icont().insert(p.get(), *node)); } #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ this->emplace(this->cend(), BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ } \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { this->emplace(this->cbegin(), BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _));} \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace(const_iterator p, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator()); \ new ((void*)containers_detail::get_pointer(d.get())) \ Node(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); \ NodePtr node = d.get(); \ d.release(); \ return iterator(this->icont().insert(p.get(), *node)); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Erases the element at p p. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Amortized constant time. iterator erase(const_iterator p) { return iterator(this->icont().erase_and_dispose(p.get(), Destroyer(this->node_alloc()))); } //! <b>Requires</b>: first and last must be valid iterator to elements in *this. //! //! <b>Effects</b>: Erases the elements pointed by [first, last). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the distance between first and last. iterator erase(const_iterator first, const_iterator last) { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); } //! <b>Effects</b>: Assigns the n copies of val to *this. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n. void assign(size_type n, const T& val) { this->priv_fill_assign(n, val); } //! <b>Effects</b>: Assigns the the range [first, last) to *this. //! //! <b>Throws</b>: If memory allocation throws or //! T's constructor from dereferencing InpIt throws. //! //! <b>Complexity</b>: Linear to n. template <class InpIt> void assign(InpIt first, InpIt last) { const bool aux_boolean = containers_detail::is_convertible<InpIt, std::size_t>::value; typedef containers_detail::bool_<aux_boolean> Result; this->priv_assign_dispatch(first, last, Result()); } //! <b>Requires</b>: p must point to an element contained //! by the list. x != *this //! //! <b>Effects</b>: Transfers all the elements of list x to this list, before the //! the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice(iterator p, ThisType& x) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont()); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } //! <b>Requires</b>: p must point to an element contained //! by this list. i must point to an element contained in list x. //! //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! If p == i or p == ++i, this function is a null operation. //! //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, ThisType &x, const_iterator i) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont(), i.get()); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } //! <b>Requires</b>: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! <b>Complexity</b>: Linear to the number of elements transferred. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, ThisType &x, const_iterator first, const_iterator last) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont(), first.get(), last.get()); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } //! <b>Requires</b>: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! n == std::distance(first, last) //! //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, ThisType &x, const_iterator first, const_iterator last, size_type n) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont(), first.get(), last.get(), n); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } //! <b>Effects</b>: Reverses the order of elements in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: This function is linear time. //! //! <b>Note</b>: Iterators and references are not invalidated void reverse() { this->icont().reverse(); } //! <b>Effects</b>: Removes all the elements that compare equal to value. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality. //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void remove(const T& value) { remove_if(equal_to_value(value)); } //! <b>Effects</b>: Removes all the elements for which a specified //! predicate is satisfied. //! //! <b>Throws</b>: If pred throws. //! //! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate. //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template <class Pred> void remove_if(Pred pred) { typedef ValueCompareToNodeCompare<Pred> Predicate; this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc())); } //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()). //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique(value_equal()); } //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! //! <b>Throws</b>: If pred throws. //! //! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons). //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template <class BinaryPredicate> void unique(BinaryPredicate binary_pred) { typedef ValueCompareToNodeCompare<BinaryPredicate> Predicate; this->icont().unique_and_dispose(Predicate(binary_pred), Destroyer(this->node_alloc())); } //! <b>Requires</b>: The lists x and *this must be distinct. //! //! <b>Effects</b>: This function removes all of x's elements and inserts them //! in order into *this according to std::less<value_type>. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. void merge(list<T, A>& x) { this->merge(x, value_less()); } //! <b>Requires</b>: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! <b>Effects</b>: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! <b>Note</b>: Iterators and references to *this are not invalidated. template <class StrictWeakOrdering> void merge(list &x, StrictWeakOrdering comp) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().merge(x.icont(), ValueCompareToNodeCompare<StrictWeakOrdering>(comp)); } else{ throw std::runtime_error("list::merge called with unequal allocators"); } } //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! <b>Throws</b>: Nothing. //! //! <b>Notes</b>: Iterators and references are not invalidated. //! //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N //! is the list's size. void sort() { this->sort(value_less()); } //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! <b>Throws</b>: Nothing. //! //! <b>Notes</b>: Iterators and references are not invalidated. //! //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N //! is the list's size. template <class StrictWeakOrdering> void sort(StrictWeakOrdering comp) { // nothing if the list has length 0 or 1. if (this->size() < 2) return; this->icont().sort(ValueCompareToNodeCompare<StrictWeakOrdering>(comp)); } /// @cond private: iterator priv_insert(const_iterator p, const T &x) { NodePtr tmp = AllocHolder::create_node(x); return iterator(this->icont().insert(p.get(), *tmp)); } //Iterator range version template<class InpIterator> void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end) { typedef typename std::iterator_traits<InpIterator>::iterator_category ItCat; priv_create_and_insert_nodes(pos, beg, end, alloc_version(), ItCat()); } template<class InpIterator> void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag) { for (; beg != end; ++beg){ this->icont().insert(pos.get(), *this->create_node_from_it(beg)); } } template<class InpIterator> void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag) { //Just forward to the default one priv_create_and_insert_nodes(pos, beg, end, allocator_v1(), std::input_iterator_tag()); } class insertion_functor; friend class insertion_functor; class insertion_functor { Icont &icont_; typename Icont::const_iterator pos_; public: insertion_functor(Icont &icont, typename Icont::const_iterator pos) : icont_(icont), pos_(pos) {} void operator()(Node &n) { this->icont_.insert(pos_, n); } }; template<class FwdIterator> void priv_create_and_insert_nodes (const_iterator pos, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag) { if(beg != end){ //Optimized allocation and construction this->allocate_many_and_construct (beg, std::distance(beg, end), insertion_functor(this->icont(), pos.get())); } } //Default constructed version void priv_create_and_insert_nodes(const_iterator pos, size_type n) { typedef default_construct_iterator<value_type, difference_type> default_iterator; this->priv_create_and_insert_nodes(pos, default_iterator(n), default_iterator()); } //Copy constructed version void priv_create_and_insert_nodes(const_iterator pos, size_type n, const T& x) { typedef constant_iterator<value_type, difference_type> cvalue_iterator; this->priv_create_and_insert_nodes(pos, cvalue_iterator(x, n), cvalue_iterator()); } //Dispatch to detect iterator range or integer overloads template <class InputIter> void priv_insert_dispatch(const_iterator p, InputIter first, InputIter last, containers_detail::false_) { this->priv_create_and_insert_nodes(p, first, last); } template<class Integer> void priv_insert_dispatch(const_iterator p, Integer n, Integer x, containers_detail::true_) { this->insert(p, (size_type)n, x); } void priv_fill_assign(size_type n, const T& val) { iterator i = this->begin(), iend = this->end(); for ( ; i != iend && n > 0; ++i, --n) *i = val; if (n > 0){ this->priv_create_and_insert_nodes(this->cend(), n, val); } else{ this->erase(i, cend()); } } template <class Integer> void priv_assign_dispatch(Integer n, Integer val, containers_detail::true_) { this->priv_fill_assign((size_type) n, (T) val); } template <class InputIter> void priv_assign_dispatch(InputIter first2, InputIter last2, containers_detail::false_) { iterator first1 = this->begin(); iterator last1 = this->end(); for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) *first1 = *first2; if (first2 == last2) this->erase(first1, last1); else{ this->priv_create_and_insert_nodes(last1, first2, last2); } } //Functors for member algorithm defaults struct value_less { bool operator()(const value_type &a, const value_type &b) const { return a < b; } }; struct value_equal { bool operator()(const value_type &a, const value_type &b) const { return a == b; } }; /// @endcond }; template <class T, class A> inline bool operator==(const list<T,A>& x, const list<T,A>& y) { if(x.size() != y.size()){ return false; } typedef typename list<T,A>::const_iterator const_iterator; const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } template <class T, class A> inline bool operator<(const list<T,A>& x, const list<T,A>& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template <class T, class A> inline bool operator!=(const list<T,A>& x, const list<T,A>& y) { return !(x == y); } template <class T, class A> inline bool operator>(const list<T,A>& x, const list<T,A>& y) { return y < x; } template <class T, class A> inline bool operator<=(const list<T,A>& x, const list<T,A>& y) { return !(y < x); } template <class T, class A> inline bool operator>=(const list<T,A>& x, const list<T,A>& y) { return !(x < y); } template <class T, class A> inline void swap(list<T, A>& x, list<T, A>& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class T, class A> struct has_trivial_destructor_after_move<boost::container::list<T, A> > { static const bool value = has_trivial_destructor<A>::value; }; */ namespace container { /// @endcond }} #include INCLUDE_BOOST_CONTAINER_DETAIL_CONFIG_END_HPP #endif // BOOST_CONTAINERS_LIST_HPP_