boost/interprocess/containers/container/set.hpp
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2009. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINERS_SET_HPP #define BOOST_CONTAINERS_SET_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include "detail/config_begin.hpp" #include INCLUDE_BOOST_CONTAINER_DETAIL_WORKAROUND_HPP #include INCLUDE_BOOST_CONTAINER_CONTAINER_FWD_HPP #include <utility> #include <functional> #include <memory> #include INCLUDE_BOOST_CONTAINER_MOVE_HPP #include INCLUDE_BOOST_CONTAINER_DETAIL_MPL_HPP #include INCLUDE_BOOST_CONTAINER_DETAIL_TREE_HPP #include INCLUDE_BOOST_CONTAINER_MOVE_HPP #ifndef BOOST_CONTAINERS_PERFECT_FORWARDING #include INCLUDE_BOOST_CONTAINER_DETAIL_PREPROCESSOR_HPP #endif #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { #else namespace boost { namespace container { #endif /// @cond // Forward declarations of operators < and ==, needed for friend declaration. template <class T, class Pred, class Alloc> inline bool operator==(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y); template <class T, class Pred, class Alloc> inline bool operator<(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y); /// @endcond //! A set is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of the keys themselves. //! Class set supports bidirectional iterators. //! //! A set satisfies all of the requirements of a container and of a reversible container //! , and of an associative container. A set also provides most operations described in //! for unique keys. template <class T, class Pred, class Alloc> class set { /// @cond private: BOOST_MOVE_MACRO_COPYABLE_AND_MOVABLE(set) typedef containers_detail::rbtree<T, T, containers_detail::identity<T>, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing set typedef typename containers_detail:: move_const_ref_type<T>::type insert_const_ref_type; /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef Pred key_compare; typedef Pred value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! <b>Effects</b>: Constructs an empty set using the specified comparison object //! and allocator. //! //! <b>Complexity</b>: Constant. explicit set(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //! <b>Effects</b>: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template <class InputIterator> set(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, true) {} //! <b>Effects</b>: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the ordered unique range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! <b>Complexity</b>: Linear in N. template <class InputIterator> set( ordered_unique_range_t, InputIterator first, InputIterator last , const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) {} //! <b>Effects</b>: Copy constructs a set. //! //! <b>Complexity</b>: Linear in x.size(). set(const set& x) : m_tree(x.m_tree) {} //! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources. //! //! <b>Complexity</b>: Construct. //! //! <b>Postcondition</b>: x is emptied. set(BOOST_MOVE_MACRO_RV_REF(set) x) : m_tree(BOOST_CONTAINER_MOVE_NAMESPACE::move(x.m_tree)) {} //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). set& operator=(BOOST_MOVE_MACRO_COPY_ASSIGN_REF(set) x) { m_tree = x.m_tree; return *this; } //! <b>Effects</b>: this->swap(x.get()). //! //! <b>Complexity</b>: Constant. set& operator=(BOOST_MOVE_MACRO_RV_REF(set) x) { m_tree = BOOST_CONTAINER_MOVE_NAMESPACE::move(x.m_tree); return *this; } //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return m_tree.key_comp(); } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant iterator begin() { return m_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return m_tree.begin(); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() { return m_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const { return m_tree.end(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() { return m_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const { return m_tree.cbegin(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const { return m_tree.cend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const { return m_tree.crbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const { return m_tree.crend(); } //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return m_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return m_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return m_tree.max_size(); } //! <b>Effects</b>: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. void swap(set& x) { m_tree.swap(x.m_tree); } //! <b>Effects</b>: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic. std::pair<iterator,bool> insert(insert_const_ref_type x) { return priv_insert(x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) std::pair<iterator,bool> insert(T &x) { return this->insert(const_cast<const T &>(x)); } template<class U> std::pair<iterator,bool> insert(const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::BOOST_CONTAINER_MOVE_NAMESPACE::is_movable<U>::value >::type* =0) { return priv_insert(u); } #endif //! <b>Effects</b>: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic. std::pair<iterator,bool> insert(BOOST_MOVE_MACRO_RV_REF(value_type) x) { return m_tree.insert_unique(BOOST_CONTAINER_MOVE_NAMESPACE::move(x)); } //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, insert_const_ref_type x) { return priv_insert(p, x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) iterator insert(const_iterator position, T &x) { return this->insert(position, const_cast<const T &>(x)); } template<class U> iterator insert(const_iterator position, const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::BOOST_CONTAINER_MOVE_NAMESPACE::is_movable<U>::value >::type* =0) { return priv_insert(position, u); } #endif //! <b>Effects</b>: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic. iterator insert(const_iterator p, BOOST_MOVE_MACRO_RV_REF(value_type) x) { return m_tree.insert_unique(p, BOOST_CONTAINER_MOVE_NAMESPACE::move(x)); } //! <b>Requires</b>: i, j are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j) template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_tree.insert_unique(first, last); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... if and only if there is //! no element in the container with equivalent value. //! and returns the iterator pointing to the //! newly inserted element. //! //! <b>Throws</b>: If memory allocation throws or //! T's in-place constructor throws. //! //! <b>Complexity</b>: Logarithmic. template <class... Args> iterator emplace(Args&&... args) { return m_tree.emplace_unique(BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... if and only if there is //! no element in the container with equivalent value. //! p is a hint pointing to where the insert //! should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_unique(hint, BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator emplace() { return m_tree.emplace_unique(); } iterator emplace_hint(const_iterator hint) { return m_tree.emplace_hint_unique(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _));}\ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! <b>Effects</b>: Erases the element pointed to by p. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() { m_tree.clear(); } //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! <b>Returns</b>: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.find(x) == m_tree.end() ? 0 : 1; } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return m_tree.equal_range(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template <class K1, class C1, class A1> friend bool operator== (const set<K1,C1,A1>&, const set<K1,C1,A1>&); template <class K1, class C1, class A1> friend bool operator< (const set<K1,C1,A1>&, const set<K1,C1,A1>&); private: std::pair<iterator, bool> priv_insert(const T &x) { return m_tree.insert_unique(x); } iterator priv_insert(const_iterator p, const T &x) { return m_tree.insert_unique(p, x); } /// @endcond }; template <class T, class Pred, class Alloc> inline bool operator==(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y) { return x.m_tree == y.m_tree; } template <class T, class Pred, class Alloc> inline bool operator<(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y) { return x.m_tree < y.m_tree; } template <class T, class Pred, class Alloc> inline bool operator!=(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y) { return !(x == y); } template <class T, class Pred, class Alloc> inline bool operator>(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y) { return y < x; } template <class T, class Pred, class Alloc> inline bool operator<=(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y) { return !(y < x); } template <class T, class Pred, class Alloc> inline bool operator>=(const set<T,Pred,Alloc>& x, const set<T,Pred,Alloc>& y) { return !(x < y); } template <class T, class Pred, class Alloc> inline void swap(set<T,Pred,Alloc>& x, set<T,Pred,Alloc>& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class T, class C, class A> struct has_trivial_destructor_after_move<boost::container::set<T, C, A> > { static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value; }; */ namespace container { // Forward declaration of operators < and ==, needed for friend declaration. template <class T, class Pred, class Alloc> inline bool operator==(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y); template <class T, class Pred, class Alloc> inline bool operator<(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y); /// @endcond //! A multiset is a kind of associative container that supports equivalent keys //! (possibly contains multiple copies of the same key value) and provides for //! fast retrieval of the keys themselves. Class multiset supports bidirectional iterators. //! //! A multiset satisfies all of the requirements of a container and of a reversible //! container, and of an associative container). multiset also provides most operations //! described for duplicate keys. template <class T, class Pred, class Alloc> class multiset { /// @cond private: BOOST_MOVE_MACRO_COPYABLE_AND_MOVABLE(multiset) typedef containers_detail::rbtree<T, T, containers_detail::identity<T>, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing multiset typedef typename containers_detail:: move_const_ref_type<T>::type insert_const_ref_type; /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef Pred key_compare; typedef Pred value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! <b>Effects</b>: Constructs an empty multiset using the specified comparison //! object and allocator. //! //! <b>Complexity</b>: Constant. explicit multiset(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //! <b>Effects</b>: Constructs an empty multiset using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template <class InputIterator> multiset(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, false) {} //! <b>Effects</b>: Constructs an empty multiset using the specified comparison object and //! allocator, and inserts elements from the ordered range [first ,last ). This function //! is more efficient than the normal range creation for ordered ranges. //! //! <b>Requires</b>: [first ,last) must be ordered according to the predicate. //! //! <b>Complexity</b>: Linear in N. template <class InputIterator> multiset( ordered_range_t ordered_range, InputIterator first, InputIterator last , const Pred& comp = Pred() , const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) {} //! <b>Effects</b>: Copy constructs a multiset. //! //! <b>Complexity</b>: Linear in x.size(). multiset(const multiset& x) : m_tree(x.m_tree) {} //! <b>Effects</b>: Move constructs a multiset. Constructs *this using x's resources. //! //! <b>Complexity</b>: Construct. //! //! <b>Postcondition</b>: x is emptied. multiset(BOOST_MOVE_MACRO_RV_REF(multiset) x) : m_tree(BOOST_CONTAINER_MOVE_NAMESPACE::move(x.m_tree)) {} //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). multiset& operator=(BOOST_MOVE_MACRO_COPY_ASSIGN_REF(multiset) x) { m_tree = x.m_tree; return *this; } //! <b>Effects</b>: this->swap(x.get()). //! //! <b>Complexity</b>: Constant. multiset& operator=(BOOST_MOVE_MACRO_RV_REF(multiset) x) { m_tree = BOOST_CONTAINER_MOVE_NAMESPACE::move(x.m_tree); return *this; } //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return m_tree.key_comp(); } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() { return m_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return m_tree.begin(); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() { return m_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const { return m_tree.end(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() { return m_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const { return m_tree.cbegin(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const { return m_tree.cend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const { return m_tree.crbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const { return m_tree.crend(); } //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return m_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return m_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return m_tree.max_size(); } //! <b>Effects</b>: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. void swap(multiset& x) { m_tree.swap(x.m_tree); } //! <b>Effects</b>: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic. iterator insert(insert_const_ref_type x) { return priv_insert(x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) iterator insert(T &x) { return this->insert(const_cast<const T &>(x)); } template<class U> iterator insert(const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::BOOST_CONTAINER_MOVE_NAMESPACE::is_movable<U>::value >::type* =0) { return priv_insert(u); } #endif //! <b>Effects</b>: Inserts a copy of x in the container. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(BOOST_MOVE_MACRO_RV_REF(value_type) x) { return m_tree.insert_equal(BOOST_CONTAINER_MOVE_NAMESPACE::move(x)); } //! <b>Effects</b>: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, insert_const_ref_type x) { return priv_insert(p, x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) iterator insert(const_iterator position, T &x) { return this->insert(position, const_cast<const T &>(x)); } template<class U> iterator insert(const_iterator position, const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::BOOST_CONTAINER_MOVE_NAMESPACE::is_movable<U>::value >::type* =0) { return priv_insert(position, u); } #endif //! <b>Effects</b>: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, BOOST_MOVE_MACRO_RV_REF(value_type) x) { return m_tree.insert_equal(p, BOOST_CONTAINER_MOVE_NAMESPACE::move(x)); } //! <b>Requires</b>: i, j are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [i,j) . //! //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j) template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_tree.insert_equal(first, last); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic. template <class... Args> iterator emplace(Args&&... args) { return m_tree.emplace_equal(BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t //! is inserted right before p. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_equal(hint, BOOST_CONTAINER_MOVE_NAMESPACE::forward<Args>(args)...); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator emplace() { return m_tree.emplace_equal(); } iterator emplace_hint(const_iterator hint) { return m_tree.emplace_hint_equal(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); }\ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! <b>Effects</b>: Erases the element pointed to by p. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() { m_tree.clear(); } //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! <b>Returns</b>: A const iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.count(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return m_tree.equal_range(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template <class K1, class C1, class A1> friend bool operator== (const multiset<K1,C1,A1>&, const multiset<K1,C1,A1>&); template <class K1, class C1, class A1> friend bool operator< (const multiset<K1,C1,A1>&, const multiset<K1,C1,A1>&); private: iterator priv_insert(const T &x) { return m_tree.insert_equal(x); } iterator priv_insert(const_iterator p, const T &x) { return m_tree.insert_equal(p, x); } /// @endcond }; template <class T, class Pred, class Alloc> inline bool operator==(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y) { return x.m_tree == y.m_tree; } template <class T, class Pred, class Alloc> inline bool operator<(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y) { return x.m_tree < y.m_tree; } template <class T, class Pred, class Alloc> inline bool operator!=(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y) { return !(x == y); } template <class T, class Pred, class Alloc> inline bool operator>(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y) { return y < x; } template <class T, class Pred, class Alloc> inline bool operator<=(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y) { return !(y < x); } template <class T, class Pred, class Alloc> inline bool operator>=(const multiset<T,Pred,Alloc>& x, const multiset<T,Pred,Alloc>& y) { return !(x < y); } template <class T, class Pred, class Alloc> inline void swap(multiset<T,Pred,Alloc>& x, multiset<T,Pred,Alloc>& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class T, class C, class A> struct has_trivial_destructor_after_move<boost::container::multiset<T, C, A> > { static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value; }; */ namespace container { /// @endcond }} #include INCLUDE_BOOST_CONTAINER_DETAIL_CONFIG_END_HPP #endif /* BOOST_CONTAINERS_SET_HPP */