boost/graph/leda_graph.hpp
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Copyright 2004 The Trustees of Indiana University.
// Copyright 2007 University of Karlsruhe
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor,
// Jens Mueller
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_LEDA_HPP
#define BOOST_GRAPH_LEDA_HPP
#include <boost/config.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <LEDA/graph/graph.h>
#include <LEDA/graph/node_array.h>
#include <LEDA/graph/node_map.h>
// The functions and classes in this file allows the user to
// treat a LEDA GRAPH object as a boost graph "as is". No
// wrapper is needed for the GRAPH object.
// Warning: this implementation relies on partial specialization
// for the graph_traits class (so it won't compile with Visual C++)
// Warning: this implementation is in alpha and has not been tested
namespace boost
{
struct leda_graph_traversal_category : public virtual bidirectional_graph_tag,
public virtual adjacency_graph_tag,
public virtual vertex_list_graph_tag
{
};
template < class vtype, class etype >
struct graph_traits< leda::GRAPH< vtype, etype > >
{
typedef leda::node vertex_descriptor;
typedef leda::edge edge_descriptor;
class adjacency_iterator
: public iterator_facade< adjacency_iterator, leda::node,
bidirectional_traversal_tag, leda::node, const leda::node* >
{
public:
adjacency_iterator(
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
: base(node), g(g)
{
}
private:
leda::node dereference() const { return leda::target(base); }
bool equal(const adjacency_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::GRAPH< vtype, etype >* g;
friend class iterator_core_access;
};
class out_edge_iterator
: public iterator_facade< out_edge_iterator, leda::edge,
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
{
public:
out_edge_iterator(
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
: base(node), g(g)
{
}
private:
const leda::edge& dereference() const { return base; }
bool equal(const out_edge_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::GRAPH< vtype, etype >* g;
friend class iterator_core_access;
};
class in_edge_iterator
: public iterator_facade< in_edge_iterator, leda::edge,
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
{
public:
in_edge_iterator(
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
: base(node), g(g)
{
}
private:
const leda::edge& dereference() const { return base; }
bool equal(const in_edge_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->in_succ(base); }
void decrement() { base = g->in_pred(base); }
leda::edge base;
const leda::GRAPH< vtype, etype >* g;
friend class iterator_core_access;
};
class vertex_iterator
: public iterator_facade< vertex_iterator, leda::node,
bidirectional_traversal_tag, const leda::node&, const leda::node* >
{
public:
vertex_iterator(
leda::node node = 0, const leda::GRAPH< vtype, etype >* g = 0)
: base(node), g(g)
{
}
private:
const leda::node& dereference() const { return base; }
bool equal(const vertex_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->succ_node(base); }
void decrement() { base = g->pred_node(base); }
leda::node base;
const leda::GRAPH< vtype, etype >* g;
friend class iterator_core_access;
};
class edge_iterator
: public iterator_facade< edge_iterator, leda::edge,
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
{
public:
edge_iterator(
leda::edge edge = 0, const leda::GRAPH< vtype, etype >* g = 0)
: base(edge), g(g)
{
}
private:
const leda::edge& dereference() const { return base; }
bool equal(const edge_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->succ_edge(base); }
void decrement() { base = g->pred_edge(base); }
leda::node base;
const leda::GRAPH< vtype, etype >* g;
friend class iterator_core_access;
};
typedef directed_tag directed_category;
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
typedef leda_graph_traversal_category traversal_category;
typedef int vertices_size_type;
typedef int edges_size_type;
typedef int degree_size_type;
};
template <> struct graph_traits< leda::graph >
{
typedef leda::node vertex_descriptor;
typedef leda::edge edge_descriptor;
class adjacency_iterator
: public iterator_facade< adjacency_iterator, leda::node,
bidirectional_traversal_tag, leda::node, const leda::node* >
{
public:
adjacency_iterator(leda::edge edge = 0, const leda::graph* g = 0)
: base(edge), g(g)
{
}
private:
leda::node dereference() const { return leda::target(base); }
bool equal(const adjacency_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
class out_edge_iterator
: public iterator_facade< out_edge_iterator, leda::edge,
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
{
public:
out_edge_iterator(leda::edge edge = 0, const leda::graph* g = 0)
: base(edge), g(g)
{
}
private:
const leda::edge& dereference() const { return base; }
bool equal(const out_edge_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
class in_edge_iterator
: public iterator_facade< in_edge_iterator, leda::edge,
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
{
public:
in_edge_iterator(leda::edge edge = 0, const leda::graph* g = 0)
: base(edge), g(g)
{
}
private:
const leda::edge& dereference() const { return base; }
bool equal(const in_edge_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->in_succ(base); }
void decrement() { base = g->in_pred(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
class vertex_iterator
: public iterator_facade< vertex_iterator, leda::node,
bidirectional_traversal_tag, const leda::node&, const leda::node* >
{
public:
vertex_iterator(leda::node node = 0, const leda::graph* g = 0)
: base(node), g(g)
{
}
private:
const leda::node& dereference() const { return base; }
bool equal(const vertex_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->succ_node(base); }
void decrement() { base = g->pred_node(base); }
leda::node base;
const leda::graph* g;
friend class iterator_core_access;
};
class edge_iterator
: public iterator_facade< edge_iterator, leda::edge,
bidirectional_traversal_tag, const leda::edge&, const leda::edge* >
{
public:
edge_iterator(leda::edge edge = 0, const leda::graph* g = 0)
: base(edge), g(g)
{
}
private:
const leda::edge& dereference() const { return base; }
bool equal(const edge_iterator& other) const
{
return base == other.base;
}
void increment() { base = g->succ_edge(base); }
void decrement() { base = g->pred_edge(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
typedef directed_tag directed_category;
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
typedef leda_graph_traversal_category traversal_category;
typedef int vertices_size_type;
typedef int edges_size_type;
typedef int degree_size_type;
};
} // namespace boost
namespace boost
{
//===========================================================================
// functions for GRAPH<vtype,etype>
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor source(
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e,
const leda::GRAPH< vtype, etype >& g)
{
return source(e);
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor target(
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e,
const leda::GRAPH< vtype, etype >& g)
{
return target(e);
}
template < class vtype, class etype >
inline std::pair<
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator,
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator >
vertices(const leda::GRAPH< vtype, etype >& g)
{
typedef
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_iterator
Iter;
return std::make_pair(Iter(g.first_node(), &g), Iter(0, &g));
}
template < class vtype, class etype >
inline std::pair<
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator,
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator >
edges(const leda::GRAPH< vtype, etype >& g)
{
typedef typename graph_traits< leda::GRAPH< vtype, etype > >::edge_iterator
Iter;
return std::make_pair(Iter(g.first_edge(), &g), Iter(0, &g));
}
template < class vtype, class etype >
inline std::pair<
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator,
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator >
out_edges(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
const leda::GRAPH< vtype, etype >& g)
{
typedef
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator
Iter;
return std::make_pair(Iter(g.first_adj_edge(u, 0), &g), Iter(0, &g));
}
template < class vtype, class etype >
inline std::pair<
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator,
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator >
in_edges(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
const leda::GRAPH< vtype, etype >& g)
{
typedef
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator
Iter;
return std::make_pair(Iter(g.first_adj_edge(u, 1), &g), Iter(0, &g));
}
template < class vtype, class etype >
inline std::pair<
typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator,
typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator >
adjacent_vertices(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
const leda::GRAPH< vtype, etype >& g)
{
typedef
typename graph_traits< leda::GRAPH< vtype, etype > >::adjacency_iterator
Iter;
return std::make_pair(Iter(g.first_adj_edge(u, 0), &g), Iter(0, &g));
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::vertices_size_type
num_vertices(const leda::GRAPH< vtype, etype >& g)
{
return g.number_of_nodes();
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::edges_size_type num_edges(
const leda::GRAPH< vtype, etype >& g)
{
return g.number_of_edges();
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type
out_degree(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
const leda::GRAPH< vtype, etype >& g)
{
return g.outdeg(u);
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type
in_degree(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
const leda::GRAPH< vtype, etype >& g)
{
return g.indeg(u);
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::degree_size_type degree(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
const leda::GRAPH< vtype, etype >& g)
{
return g.outdeg(u) + g.indeg(u);
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor
add_vertex(leda::GRAPH< vtype, etype >& g)
{
return g.new_node();
}
template < class vtype, class etype >
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor
add_vertex(const vtype& vp, leda::GRAPH< vtype, etype >& g)
{
return g.new_node(vp);
}
template < class vtype, class etype >
void clear_vertex(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
leda::GRAPH< vtype, etype >& g)
{
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator ei,
ei_end;
for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ei++)
remove_edge(*ei);
typename graph_traits< leda::GRAPH< vtype, etype > >::in_edge_iterator iei,
iei_end;
for (boost::tie(iei, iei_end) = in_edges(u, g); iei != iei_end; iei++)
remove_edge(*iei);
}
template < class vtype, class etype >
void remove_vertex(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
leda::GRAPH< vtype, etype >& g)
{
g.del_node(u);
}
template < class vtype, class etype >
std::pair<
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor,
bool >
add_edge(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v,
leda::GRAPH< vtype, etype >& g)
{
return std::make_pair(g.new_edge(u, v), true);
}
template < class vtype, class etype >
std::pair<
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor,
bool >
add_edge(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v,
const etype& et, leda::GRAPH< vtype, etype >& g)
{
return std::make_pair(g.new_edge(u, v, et), true);
}
template < class vtype, class etype >
void remove_edge(
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor u,
typename graph_traits< leda::GRAPH< vtype, etype > >::vertex_descriptor v,
leda::GRAPH< vtype, etype >& g)
{
typename graph_traits< leda::GRAPH< vtype, etype > >::out_edge_iterator i,
iend;
for (boost::tie(i, iend) = out_edges(u, g); i != iend; ++i)
if (target(*i, g) == v)
g.del_edge(*i);
}
template < class vtype, class etype >
void remove_edge(
typename graph_traits< leda::GRAPH< vtype, etype > >::edge_descriptor e,
leda::GRAPH< vtype, etype >& g)
{
g.del_edge(e);
}
//===========================================================================
// functions for graph (non-templated version)
graph_traits< leda::graph >::vertex_descriptor source(
graph_traits< leda::graph >::edge_descriptor e, const leda::graph& g)
{
return source(e);
}
graph_traits< leda::graph >::vertex_descriptor target(
graph_traits< leda::graph >::edge_descriptor e, const leda::graph& g)
{
return target(e);
}
inline std::pair< graph_traits< leda::graph >::vertex_iterator,
graph_traits< leda::graph >::vertex_iterator >
vertices(const leda::graph& g)
{
typedef graph_traits< leda::graph >::vertex_iterator Iter;
return std::make_pair(Iter(g.first_node(), &g), Iter(0, &g));
}
inline std::pair< graph_traits< leda::graph >::edge_iterator,
graph_traits< leda::graph >::edge_iterator >
edges(const leda::graph& g)
{
typedef graph_traits< leda::graph >::edge_iterator Iter;
return std::make_pair(Iter(g.first_edge(), &g), Iter(0, &g));
}
inline std::pair< graph_traits< leda::graph >::out_edge_iterator,
graph_traits< leda::graph >::out_edge_iterator >
out_edges(
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
{
typedef graph_traits< leda::graph >::out_edge_iterator Iter;
return std::make_pair(Iter(g.first_adj_edge(u), &g), Iter(0, &g));
}
inline std::pair< graph_traits< leda::graph >::in_edge_iterator,
graph_traits< leda::graph >::in_edge_iterator >
in_edges(graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
{
typedef graph_traits< leda::graph >::in_edge_iterator Iter;
return std::make_pair(Iter(g.first_in_edge(u), &g), Iter(0, &g));
}
inline std::pair< graph_traits< leda::graph >::adjacency_iterator,
graph_traits< leda::graph >::adjacency_iterator >
adjacent_vertices(
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
{
typedef graph_traits< leda::graph >::adjacency_iterator Iter;
return std::make_pair(Iter(g.first_adj_edge(u), &g), Iter(0, &g));
}
graph_traits< leda::graph >::vertices_size_type num_vertices(
const leda::graph& g)
{
return g.number_of_nodes();
}
graph_traits< leda::graph >::edges_size_type num_edges(const leda::graph& g)
{
return g.number_of_edges();
}
graph_traits< leda::graph >::degree_size_type out_degree(
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
{
return g.outdeg(u);
}
graph_traits< leda::graph >::degree_size_type in_degree(
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
{
return g.indeg(u);
}
graph_traits< leda::graph >::degree_size_type degree(
graph_traits< leda::graph >::vertex_descriptor u, const leda::graph& g)
{
return g.outdeg(u) + g.indeg(u);
}
graph_traits< leda::graph >::vertex_descriptor add_vertex(leda::graph& g)
{
return g.new_node();
}
void remove_edge(graph_traits< leda::graph >::vertex_descriptor u,
graph_traits< leda::graph >::vertex_descriptor v, leda::graph& g)
{
graph_traits< leda::graph >::out_edge_iterator i, iend;
for (boost::tie(i, iend) = out_edges(u, g); i != iend; ++i)
if (target(*i, g) == v)
g.del_edge(*i);
}
void remove_edge(graph_traits< leda::graph >::edge_descriptor e, leda::graph& g)
{
g.del_edge(e);
}
void clear_vertex(
graph_traits< leda::graph >::vertex_descriptor u, leda::graph& g)
{
graph_traits< leda::graph >::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ei++)
remove_edge(*ei, g);
graph_traits< leda::graph >::in_edge_iterator iei, iei_end;
for (boost::tie(iei, iei_end) = in_edges(u, g); iei != iei_end; iei++)
remove_edge(*iei, g);
}
void remove_vertex(
graph_traits< leda::graph >::vertex_descriptor u, leda::graph& g)
{
g.del_node(u);
}
std::pair< graph_traits< leda::graph >::edge_descriptor, bool > add_edge(
graph_traits< leda::graph >::vertex_descriptor u,
graph_traits< leda::graph >::vertex_descriptor v, leda::graph& g)
{
return std::make_pair(g.new_edge(u, v), true);
}
//===========================================================================
// property maps for GRAPH<vtype,etype>
class leda_graph_id_map : public put_get_helper< int, leda_graph_id_map >
{
public:
typedef readable_property_map_tag category;
typedef int value_type;
typedef int reference;
typedef leda::node key_type;
leda_graph_id_map() {}
template < class T > long operator[](T x) const { return x->id(); }
};
template < class vtype, class etype >
inline leda_graph_id_map get(
vertex_index_t, const leda::GRAPH< vtype, etype >& g)
{
return leda_graph_id_map();
}
template < class vtype, class etype >
inline leda_graph_id_map get(edge_index_t, const leda::GRAPH< vtype, etype >& g)
{
return leda_graph_id_map();
}
template < class Tag > struct leda_property_map
{
};
template <> struct leda_property_map< vertex_index_t >
{
template < class vtype, class etype > struct bind_
{
typedef leda_graph_id_map type;
typedef leda_graph_id_map const_type;
};
};
template <> struct leda_property_map< edge_index_t >
{
template < class vtype, class etype > struct bind_
{
typedef leda_graph_id_map type;
typedef leda_graph_id_map const_type;
};
};
template < class Data, class DataRef, class GraphPtr >
class leda_graph_data_map : public put_get_helper< DataRef,
leda_graph_data_map< Data, DataRef, GraphPtr > >
{
public:
typedef Data value_type;
typedef DataRef reference;
typedef void key_type;
typedef lvalue_property_map_tag category;
leda_graph_data_map(GraphPtr g) : m_g(g) {}
template < class NodeOrEdge > DataRef operator[](NodeOrEdge x) const
{
return (*m_g)[x];
}
protected:
GraphPtr m_g;
};
template <> struct leda_property_map< vertex_all_t >
{
template < class vtype, class etype > struct bind_
{
typedef leda_graph_data_map< vtype, vtype&,
leda::GRAPH< vtype, etype >* >
type;
typedef leda_graph_data_map< vtype, const vtype&,
const leda::GRAPH< vtype, etype >* >
const_type;
};
};
template < class vtype, class etype >
inline typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::type
get(vertex_all_t, leda::GRAPH< vtype, etype >& g)
{
typedef
typename property_map< leda::GRAPH< vtype, etype >, vertex_all_t >::type
pmap_type;
return pmap_type(&g);
}
template < class vtype, class etype >
inline typename property_map< leda::GRAPH< vtype, etype >,
vertex_all_t >::const_type
get(vertex_all_t, const leda::GRAPH< vtype, etype >& g)
{
typedef typename property_map< leda::GRAPH< vtype, etype >,
vertex_all_t >::const_type pmap_type;
return pmap_type(&g);
}
template <> struct leda_property_map< edge_all_t >
{
template < class vtype, class etype > struct bind_
{
typedef leda_graph_data_map< etype, etype&,
leda::GRAPH< vtype, etype >* >
type;
typedef leda_graph_data_map< etype, const etype&,
const leda::GRAPH< vtype, etype >* >
const_type;
};
};
template < class vtype, class etype >
inline typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::type
get(edge_all_t, leda::GRAPH< vtype, etype >& g)
{
typedef
typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::type
pmap_type;
return pmap_type(&g);
}
template < class vtype, class etype >
inline
typename property_map< leda::GRAPH< vtype, etype >, edge_all_t >::const_type
get(edge_all_t, const leda::GRAPH< vtype, etype >& g)
{
typedef typename property_map< leda::GRAPH< vtype, etype >,
edge_all_t >::const_type pmap_type;
return pmap_type(&g);
}
// property map interface to the LEDA node_array class
template < class E, class ERef, class NodeMapPtr >
class leda_node_property_map
: public put_get_helper< ERef, leda_node_property_map< E, ERef, NodeMapPtr > >
{
public:
typedef E value_type;
typedef ERef reference;
typedef leda::node key_type;
typedef lvalue_property_map_tag category;
leda_node_property_map(NodeMapPtr a) : m_array(a) {}
ERef operator[](leda::node n) const { return (*m_array)[n]; }
protected:
NodeMapPtr m_array;
};
template < class E >
leda_node_property_map< E, const E&, const leda::node_array< E >* >
make_leda_node_property_map(const leda::node_array< E >& a)
{
typedef leda_node_property_map< E, const E&, const leda::node_array< E >* >
pmap_type;
return pmap_type(&a);
}
template < class E >
leda_node_property_map< E, E&, leda::node_array< E >* >
make_leda_node_property_map(leda::node_array< E >& a)
{
typedef leda_node_property_map< E, E&, leda::node_array< E >* > pmap_type;
return pmap_type(&a);
}
template < class E >
leda_node_property_map< E, const E&, const leda::node_map< E >* >
make_leda_node_property_map(const leda::node_map< E >& a)
{
typedef leda_node_property_map< E, const E&, const leda::node_map< E >* >
pmap_type;
return pmap_type(&a);
}
template < class E >
leda_node_property_map< E, E&, leda::node_map< E >* >
make_leda_node_property_map(leda::node_map< E >& a)
{
typedef leda_node_property_map< E, E&, leda::node_map< E >* > pmap_type;
return pmap_type(&a);
}
// g++ 'enumeral_type' in template unification not implemented workaround
template < class vtype, class etype, class Tag >
struct property_map< leda::GRAPH< vtype, etype >, Tag >
{
typedef typename leda_property_map< Tag >::template bind_< vtype, etype >
map_gen;
typedef typename map_gen::type type;
typedef typename map_gen::const_type const_type;
};
template < class vtype, class etype, class PropertyTag, class Key >
inline typename boost::property_traits< typename boost::property_map<
leda::GRAPH< vtype, etype >, PropertyTag >::const_type >::value_type
get(PropertyTag p, const leda::GRAPH< vtype, etype >& g, const Key& key)
{
return get(get(p, g), key);
}
template < class vtype, class etype, class PropertyTag, class Key, class Value >
inline void put(PropertyTag p, leda::GRAPH< vtype, etype >& g, const Key& key,
const Value& value)
{
typedef
typename property_map< leda::GRAPH< vtype, etype >, PropertyTag >::type
Map;
Map pmap = get(p, g);
put(pmap, key, value);
}
// property map interface to the LEDA edge_array class
template < class E, class ERef, class EdgeMapPtr >
class leda_edge_property_map
: public put_get_helper< ERef, leda_edge_property_map< E, ERef, EdgeMapPtr > >
{
public:
typedef E value_type;
typedef ERef reference;
typedef leda::edge key_type;
typedef lvalue_property_map_tag category;
leda_edge_property_map(EdgeMapPtr a) : m_array(a) {}
ERef operator[](leda::edge n) const { return (*m_array)[n]; }
protected:
EdgeMapPtr m_array;
};
template < class E >
leda_edge_property_map< E, const E&, const leda::edge_array< E >* >
make_leda_node_property_map(const leda::node_array< E >& a)
{
typedef leda_edge_property_map< E, const E&, const leda::node_array< E >* >
pmap_type;
return pmap_type(&a);
}
template < class E >
leda_edge_property_map< E, E&, leda::edge_array< E >* >
make_leda_edge_property_map(leda::edge_array< E >& a)
{
typedef leda_edge_property_map< E, E&, leda::edge_array< E >* > pmap_type;
return pmap_type(&a);
}
template < class E >
leda_edge_property_map< E, const E&, const leda::edge_map< E >* >
make_leda_edge_property_map(const leda::edge_map< E >& a)
{
typedef leda_edge_property_map< E, const E&, const leda::edge_map< E >* >
pmap_type;
return pmap_type(&a);
}
template < class E >
leda_edge_property_map< E, E&, leda::edge_map< E >* >
make_leda_edge_property_map(leda::edge_map< E >& a)
{
typedef leda_edge_property_map< E, E&, leda::edge_map< E >* > pmap_type;
return pmap_type(&a);
}
} // namespace boost
#endif // BOOST_GRAPH_LEDA_HPP