boost/heap/binomial_heap.hpp
// boost heap: binomial heap // // Copyright (C) 2010 Tim Blechmann // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HEAP_BINOMIAL_HEAP_HPP #define BOOST_HEAP_BINOMIAL_HEAP_HPP #include <algorithm> #include <type_traits> #include <utility> #include <boost/assert.hpp> #include <boost/heap/detail/heap_comparison.hpp> #include <boost/heap/detail/heap_node.hpp> #include <boost/heap/detail/stable_heap.hpp> #include <boost/heap/detail/tree_iterator.hpp> #include <boost/type_traits/integral_constant.hpp> #ifdef BOOST_HAS_PRAGMA_ONCE # pragma once #endif #ifndef BOOST_DOXYGEN_INVOKED # ifdef BOOST_HEAP_SANITYCHECKS # define BOOST_HEAP_ASSERT BOOST_ASSERT # else # define BOOST_HEAP_ASSERT( expression ) static_assert( true, "force semicolon" ) # endif #endif namespace boost { namespace heap { namespace detail { typedef parameter::parameters< boost::parameter::optional< tag::allocator >, boost::parameter::optional< tag::compare >, boost::parameter::optional< tag::stable >, boost::parameter::optional< tag::constant_time_size >, boost::parameter::optional< tag::stability_counter_type > > binomial_heap_signature; template < typename T, typename Parspec > struct make_binomial_heap_base { static const bool constant_time_size = parameter::binding< Parspec, tag::constant_time_size, std::true_type >::type::value; typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::type base_type; typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::allocator_argument allocator_argument; typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::compare_argument compare_argument; typedef parent_pointing_heap_node< typename base_type::internal_type > node_type; typedef typename boost::allocator_rebind< allocator_argument, node_type >::type allocator_type; struct type : base_type, allocator_type { type( compare_argument const& arg ) : base_type( arg ) {} type( allocator_type const& alloc ) : allocator_type( alloc ) {} type( type const& rhs ) : base_type( rhs ), allocator_type( rhs ) {} type( type&& rhs ) : base_type( std::move( static_cast< base_type& >( rhs ) ) ), allocator_type( std::move( static_cast< allocator_type& >( rhs ) ) ) {} type& operator=( type&& rhs ) { base_type::operator=( std::move( static_cast< base_type& >( rhs ) ) ); allocator_type::operator=( std::move( static_cast< allocator_type& >( rhs ) ) ); return *this; } type& operator=( type const& rhs ) { base_type::operator=( static_cast< base_type const& >( rhs ) ); allocator_type::operator=( static_cast< allocator_type const& >( rhs ) ); return *this; } }; }; } // namespace detail /** * \class binomial_heap * \brief binomial heap * * The template parameter T is the type to be managed by the container. * The user can specify additional options and if no options are provided default options are used. * * The container supports the following options: * - \c boost::heap::stable<>, defaults to \c stable<false> * - \c boost::heap::compare<>, defaults to \c compare<std::less<T> > * - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> > * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true> * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t> * */ #ifdef BOOST_DOXYGEN_INVOKED template < class T, class... Options > #else template < typename T, class A0 = boost::parameter::void_, class A1 = boost::parameter::void_, class A2 = boost::parameter::void_, class A3 = boost::parameter::void_ > #endif class binomial_heap : private detail::make_binomial_heap_base< T, typename detail::binomial_heap_signature::bind< A0, A1, A2, A3 >::type >::type { typedef typename detail::binomial_heap_signature::bind< A0, A1, A2, A3 >::type bound_args; typedef detail::make_binomial_heap_base< T, bound_args > base_maker; typedef typename base_maker::type super_t; typedef typename super_t::internal_type internal_type; typedef typename super_t::size_holder_type size_holder; typedef typename super_t::stability_counter_type stability_counter_type; typedef typename base_maker::allocator_argument allocator_argument; template < typename Heap1, typename Heap2 > friend struct heap_merge_emulate; public: static const bool constant_time_size = super_t::constant_time_size; static const bool has_ordered_iterators = true; static const bool is_mergable = true; static const bool is_stable = detail::extract_stable< bound_args >::value; static const bool has_reserve = false; private: #ifndef BOOST_DOXYGEN_INVOKED struct implementation_defined : detail::extract_allocator_types< typename base_maker::allocator_argument > { typedef T value_type; typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::size_type size_type; typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::reference reference; typedef typename base_maker::compare_argument value_compare; typedef typename base_maker::allocator_type allocator_type; typedef typename base_maker::node_type node; typedef typename boost::allocator_pointer< allocator_type >::type node_pointer; typedef typename boost::allocator_const_pointer< allocator_type >::type const_node_pointer; typedef detail::node_handle< node_pointer, super_t, reference > handle_type; typedef typename base_maker::node_type node_type; typedef boost::intrusive::list< detail::heap_node_base< false >, boost::intrusive::constant_time_size< true > > node_list_type; typedef typename node_list_type::iterator node_list_iterator; typedef typename node_list_type::const_iterator node_list_const_iterator; typedef detail::value_extractor< value_type, internal_type, super_t > value_extractor; typedef detail::recursive_tree_iterator< node_type, node_list_const_iterator, const value_type, value_extractor, detail::list_iterator_converter< node_type, node_list_type > > iterator; typedef iterator const_iterator; typedef detail::tree_iterator< node_type, const value_type, allocator_type, value_extractor, detail::list_iterator_converter< node_type, node_list_type >, true, true, value_compare > ordered_iterator; }; #endif public: typedef T value_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::allocator_type allocator_type; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; /// \copydoc boost::heap::priority_queue::iterator typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::ordered_iterator ordered_iterator; typedef typename implementation_defined::handle_type handle_type; private: typedef typename implementation_defined::node_type node_type; typedef typename implementation_defined::node_list_type node_list_type; typedef typename implementation_defined::node_pointer node_pointer; typedef typename implementation_defined::const_node_pointer const_node_pointer; typedef typename implementation_defined::node_list_iterator node_list_iterator; typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator; typedef typename super_t::internal_compare internal_compare; public: /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &) explicit binomial_heap( value_compare const& cmp = value_compare() ) : super_t( cmp ), top_element( 0 ) {} /// \copydoc boost::heap::priority_queue::priority_queue(allocator_type const &) explicit binomial_heap( allocator_type const& alloc ) : super_t( alloc ), top_element( 0 ) {} /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &) binomial_heap( binomial_heap const& rhs ) : super_t( rhs ), top_element( 0 ) { if ( rhs.empty() ) return; clone_forest( rhs ); size_holder::set_size( rhs.get_size() ); } /// \copydoc boost::heap::priority_queue::operator=(priority_queue const &) binomial_heap& operator=( binomial_heap const& rhs ) { clear(); size_holder::set_size( rhs.get_size() ); static_cast< super_t& >( *this ) = rhs; if ( rhs.empty() ) top_element = nullptr; else clone_forest( rhs ); return *this; } /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&) binomial_heap( binomial_heap&& rhs ) : super_t( std::move( rhs ) ), top_element( rhs.top_element ) { trees.splice( trees.begin(), rhs.trees ); rhs.top_element = nullptr; } /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&) binomial_heap& operator=( binomial_heap&& rhs ) { clear(); super_t::operator=( std::move( rhs ) ); trees.splice( trees.begin(), rhs.trees ); top_element = rhs.top_element; rhs.top_element = nullptr; return *this; } ~binomial_heap( void ) { clear(); } /// \copydoc boost::heap::priority_queue::empty bool empty( void ) const { return top_element == nullptr; } /** * \b Effects: Returns the number of elements contained in the priority queue. * * \b Complexity: Constant, if configured with constant_time_size<true>, otherwise linear. * * */ size_type size( void ) const { if ( constant_time_size ) return size_holder::get_size(); if ( empty() ) return 0; else return detail::count_list_nodes< node_type, node_list_type >( trees ); } /// \copydoc boost::heap::priority_queue::max_size size_type max_size( void ) const { const allocator_type& alloc = *this; return boost::allocator_max_size( alloc ); } /// \copydoc boost::heap::priority_queue::clear void clear( void ) { typedef detail::node_disposer< node_type, typename node_list_type::value_type, allocator_type > disposer; trees.clear_and_dispose( disposer( *this ) ); size_holder::set_size( 0 ); top_element = nullptr; } /// \copydoc boost::heap::priority_queue::get_allocator allocator_type get_allocator( void ) const { return *this; } /// \copydoc boost::heap::priority_queue::swap void swap( binomial_heap& rhs ) { super_t::swap( rhs ); std::swap( top_element, rhs.top_element ); trees.swap( rhs.trees ); } /// \copydoc boost::heap::priority_queue::top const_reference top( void ) const { BOOST_ASSERT( !empty() ); return super_t::get_value( top_element->value ); } /** * \b Effects: Adds a new element to the priority queue. Returns handle to element * * \b Complexity: Logarithmic. * * */ handle_type push( value_type const& v ) { allocator_type& alloc = *this; node_pointer n = alloc.allocate( 1 ); new ( n ) node_type( super_t::make_node( v ) ); insert_node( trees.begin(), n ); if ( !top_element || super_t::operator()( top_element->value, n->value ) ) top_element = n; size_holder::increment(); sanity_check(); return handle_type( n ); } /** * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns * handle to element. * * \b Complexity: Logarithmic. * * */ template < class... Args > handle_type emplace( Args&&... args ) { allocator_type& alloc = *this; node_pointer n = alloc.allocate( 1 ); new ( n ) node_type( super_t::make_node( std::forward< Args >( args )... ) ); insert_node( trees.begin(), n ); if ( !top_element || super_t::operator()( top_element->value, n->value ) ) top_element = n; size_holder::increment(); sanity_check(); return handle_type( n ); } /** * \b Effects: Removes the top element from the priority queue. * * \b Complexity: Logarithmic. * * */ void pop( void ) { BOOST_ASSERT( !empty() ); node_pointer element = top_element; trees.erase( node_list_type::s_iterator_to( *element ) ); size_holder::decrement(); if ( element->child_count() ) { size_type sz = ( 1 << element->child_count() ) - 1; binomial_heap children( value_comp(), element->children, sz ); if ( trees.empty() ) { stability_counter_type stability_count = super_t::get_stability_count(); size_t size = constant_time_size ? size_holder::get_size() : 0; swap( children ); super_t::set_stability_count( stability_count ); if ( constant_time_size ) size_holder::set_size( size ); } else merge_and_clear_nodes( children ); } if ( trees.empty() ) top_element = nullptr; else update_top_element(); element->~node_type(); allocator_type& alloc = *this; alloc.deallocate( element, 1 ); sanity_check(); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic. * * */ void update( handle_type handle, const_reference v ) { if ( super_t::operator()( super_t::get_value( handle.node_->value ), v ) ) increase( handle, v ); else decrease( handle, v ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void update( handle_type handle ) { node_pointer this_node = handle.node_; if ( this_node->parent ) { if ( super_t::operator()( super_t::get_value( this_node->parent->value ), super_t::get_value( this_node->value ) ) ) increase( handle ); else decrease( handle ); } else decrease( handle ); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be greater than the current one * */ void increase( handle_type handle, const_reference v ) { handle.node_->value = super_t::make_node( v ); increase( handle ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void increase( handle_type handle ) { node_pointer n = handle.node_; siftup( n, *this ); update_top_element(); sanity_check(); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be less than the current one * */ void decrease( handle_type handle, const_reference v ) { handle.node_->value = super_t::make_node( v ); decrease( handle ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has * been updated, the behavior of the data structure is undefined! * */ void decrease( handle_type handle ) { node_pointer n = handle.node_; siftdown( n ); update_top_element(); } /** * \b Effects: Merge with priority queue rhs. * * \b Complexity: Logarithmic. * * */ void merge( binomial_heap& rhs ) { if ( rhs.empty() ) return; if ( empty() ) { swap( rhs ); return; } size_type new_size = size_holder::get_size() + rhs.get_size(); merge_and_clear_nodes( rhs ); size_holder::set_size( new_size ); rhs.set_size( 0 ); rhs.top_element = nullptr; super_t::set_stability_count( ( std::max )( super_t::get_stability_count(), rhs.get_stability_count() ) ); rhs.set_stability_count( 0 ); } public: /// \copydoc boost::heap::priority_queue::begin iterator begin( void ) const { return iterator( trees.begin() ); } /// \copydoc boost::heap::priority_queue::end iterator end( void ) const { return iterator( trees.end() ); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_begin( void ) const { return ordered_iterator( trees.begin(), trees.end(), top_element, super_t::value_comp() ); } /// \copydoc boost::heap::fibonacci_heap::ordered_end ordered_iterator ordered_end( void ) const { return ordered_iterator( nullptr, super_t::value_comp() ); } /** * \b Effects: Removes the element handled by \c handle from the priority_queue. * * \b Complexity: Logarithmic. * */ void erase( handle_type handle ) { node_pointer n = handle.node_; siftup( n, force_inf() ); top_element = n; pop(); } /// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator static handle_type s_handle_from_iterator( iterator const& it ) { node_type* ptr = const_cast< node_type* >( it.get_node() ); return handle_type( ptr ); } /// \copydoc boost::heap::priority_queue::value_comp value_compare const& value_comp( void ) const { return super_t::value_comp(); } /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const template < typename HeapType > bool operator<( HeapType const& rhs ) const { return detail::heap_compare( *this, rhs ); } /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const template < typename HeapType > bool operator>( HeapType const& rhs ) const { return detail::heap_compare( rhs, *this ); } /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const template < typename HeapType > bool operator>=( HeapType const& rhs ) const { return !operator<( rhs ); } /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const template < typename HeapType > bool operator<=( HeapType const& rhs ) const { return !operator>( rhs ); } /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const template < typename HeapType > bool operator==( HeapType const& rhs ) const { return detail::heap_equality( *this, rhs ); } /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const template < typename HeapType > bool operator!=( HeapType const& rhs ) const { return !( *this == rhs ); } private: #if !defined( BOOST_DOXYGEN_INVOKED ) void merge_and_clear_nodes( binomial_heap& rhs ) { BOOST_HEAP_ASSERT( !empty() ); BOOST_HEAP_ASSERT( !rhs.empty() ); node_list_iterator this_iterator = trees.begin(); node_pointer carry_node = nullptr; while ( !rhs.trees.empty() ) { node_pointer rhs_node = static_cast< node_pointer >( &rhs.trees.front() ); size_type rhs_degree = rhs_node->child_count(); if ( super_t::operator()( top_element->value, rhs_node->value ) ) top_element = rhs_node; try_again: node_pointer this_node = static_cast< node_pointer >( &*this_iterator ); size_type this_degree = this_node->child_count(); sorted_by_degree(); rhs.sorted_by_degree(); if ( this_degree == rhs_degree ) { if ( carry_node ) { if ( carry_node->child_count() < this_degree ) { trees.insert( this_iterator, *carry_node ); carry_node = nullptr; } else { rhs.trees.pop_front(); carry_node = merge_trees( carry_node, rhs_node ); } ++this_iterator; } else { this_iterator = trees.erase( this_iterator ); rhs.trees.pop_front(); carry_node = merge_trees( this_node, rhs_node ); } if ( this_iterator == trees.end() ) break; else continue; } if ( this_degree < rhs_degree ) { if ( carry_node ) { if ( carry_node->child_count() < this_degree ) { trees.insert( this_iterator, *carry_node ); carry_node = nullptr; ++this_iterator; } else if ( carry_node->child_count() == rhs_degree ) { rhs.trees.pop_front(); carry_node = merge_trees( carry_node, rhs_node ); continue; } else { this_iterator = trees.erase( this_iterator ); carry_node = merge_trees( this_node, carry_node ); } goto try_again; } else { ++this_iterator; if ( this_iterator == trees.end() ) break; goto try_again; } if ( this_iterator == trees.end() ) break; else continue; } if ( this_degree > rhs_degree ) { rhs.trees.pop_front(); if ( carry_node ) { if ( carry_node->child_count() < rhs_degree ) { trees.insert( this_iterator, *carry_node ); trees.insert( this_iterator, *rhs_node ); carry_node = nullptr; } else carry_node = merge_trees( rhs_node, carry_node ); } else trees.insert( this_iterator, *rhs_node ); } } if ( !rhs.trees.empty() ) { if ( carry_node ) { node_list_iterator rhs_it = rhs.trees.begin(); while ( static_cast< node_pointer >( &*rhs_it )->child_count() < carry_node->child_count() ) ++rhs_it; rhs.insert_node( rhs_it, carry_node ); rhs.increment(); sorted_by_degree(); rhs.sorted_by_degree(); if ( trees.empty() ) { trees.splice( trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end() ); update_top_element(); } else merge_and_clear_nodes( rhs ); } else trees.splice( trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end() ); return; } if ( carry_node ) insert_node( this_iterator, carry_node ); } void clone_forest( binomial_heap const& rhs ) { BOOST_HEAP_ASSERT( trees.empty() ); typedef typename node_type::template node_cloner< allocator_type > node_cloner; trees.clone_from( rhs.trees, node_cloner( *this, nullptr ), detail::nop_disposer() ); update_top_element(); } struct force_inf { template < typename X > bool operator()( X const&, X const& ) const { return false; } }; template < typename Compare > void siftup( node_pointer n, Compare const& cmp ) { while ( n->parent ) { node_pointer parent = n->parent; node_pointer grand_parent = parent->parent; if ( cmp( n->value, parent->value ) ) return; n->remove_from_parent(); n->swap_children( parent ); n->update_children(); parent->update_children(); if ( grand_parent ) { parent->remove_from_parent(); grand_parent->add_child( n ); } else { node_list_iterator it = trees.erase( node_list_type::s_iterator_to( *parent ) ); trees.insert( it, *n ); } n->add_child( parent ); } } void siftdown( node_pointer n ) { while ( n->child_count() ) { node_pointer max_child = detail::find_max_child< node_list_type, node_type, internal_compare >( n->children, super_t::get_internal_cmp() ); if ( super_t::operator()( max_child->value, n->value ) ) return; max_child->remove_from_parent(); n->swap_children( max_child ); n->update_children(); max_child->update_children(); node_pointer parent = n->parent; if ( parent ) { n->remove_from_parent(); max_child->add_child( n ); parent->add_child( max_child ); } else { node_list_iterator position = trees.erase( node_list_type::s_iterator_to( *n ) ); max_child->add_child( n ); trees.insert( position, *max_child ); } } } void insert_node( node_list_iterator it, node_pointer n ) { if ( it != trees.end() ) BOOST_HEAP_ASSERT( static_cast< node_pointer >( &*it )->child_count() >= n->child_count() ); while ( true ) { BOOST_HEAP_ASSERT( !n->is_linked() ); if ( it == trees.end() ) break; node_pointer this_node = static_cast< node_pointer >( &*it ); size_type this_degree = this_node->child_count(); size_type n_degree = n->child_count(); if ( this_degree == n_degree ) { BOOST_HEAP_ASSERT( it->is_linked() ); it = trees.erase( it ); n = merge_trees( n, this_node ); } else break; } trees.insert( it, *n ); } // private constructor, just used in pop() explicit binomial_heap( value_compare const& cmp, node_list_type& child_list, size_type size ) : super_t( cmp ) { size_holder::set_size( size ); if ( size ) top_element = static_cast< node_pointer >( &*child_list.begin() ); // not correct, but we will reset it later else top_element = nullptr; for ( node_list_iterator it = child_list.begin(); it != child_list.end(); ++it ) { node_pointer n = static_cast< node_pointer >( &*it ); n->parent = nullptr; } trees.splice( trees.end(), child_list, child_list.begin(), child_list.end() ); trees.sort( detail::cmp_by_degree< node_type >() ); } node_pointer merge_trees( node_pointer node1, node_pointer node2 ) { BOOST_HEAP_ASSERT( node1->child_count() == node2->child_count() ); if ( super_t::operator()( node1->value, node2->value ) ) std::swap( node1, node2 ); if ( node2->parent ) node2->remove_from_parent(); node1->add_child( node2 ); return node1; } void update_top_element( void ) { top_element = detail::find_max_child< node_list_type, node_type, internal_compare >( trees, super_t::get_internal_cmp() ); } void sorted_by_degree( void ) const { # ifdef BOOST_HEAP_SANITYCHECKS int degree = -1; for ( node_list_const_iterator it = trees.begin(); it != trees.end(); ++it ) { const_node_pointer n = static_cast< const_node_pointer >( &*it ); BOOST_HEAP_ASSERT( int( n->child_count() ) > degree ); degree = n->child_count(); BOOST_HEAP_ASSERT( ( detail::is_heap< node_type, super_t >( n, *this ) ) ); size_type child_nodes = detail::count_nodes< node_type >( n ); BOOST_HEAP_ASSERT( child_nodes == size_type( 1 << static_cast< const_node_pointer >( &*it )->child_count() ) ); } # endif } void sanity_check( void ) { # ifdef BOOST_HEAP_SANITYCHECKS sorted_by_degree(); if ( !empty() ) { node_pointer found_top = detail::find_max_child< node_list_type, node_type, internal_compare >( trees, super_t::get_internal_cmp() ); BOOST_HEAP_ASSERT( top_element == found_top ); } if ( constant_time_size ) { size_t counted = detail::count_list_nodes< node_type, node_list_type >( trees ); size_t stored = size_holder::get_size(); BOOST_HEAP_ASSERT( counted == stored ); } # endif } node_pointer top_element; node_list_type trees; #endif // BOOST_DOXYGEN_INVOKED }; }} // namespace boost::heap #undef BOOST_HEAP_ASSERT #endif /* BOOST_HEAP_D_ARY_HEAP_HPP */