boost/heap/pairing_heap.hpp
// boost heap: pairing heap // // Copyright (C) 2010 Tim Blechmann // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HEAP_PAIRING_HEAP_HPP #define BOOST_HEAP_PAIRING_HEAP_HPP #include <algorithm> #include <type_traits> #include <utility> #include <boost/assert.hpp> #include <boost/heap/detail/heap_comparison.hpp> #include <boost/heap/detail/heap_node.hpp> #include <boost/heap/detail/stable_heap.hpp> #include <boost/heap/detail/tree_iterator.hpp> #include <boost/heap/policies.hpp> #ifdef BOOST_HAS_PRAGMA_ONCE # pragma once #endif #ifndef BOOST_DOXYGEN_INVOKED # ifdef BOOST_HEAP_SANITYCHECKS # define BOOST_HEAP_ASSERT BOOST_ASSERT # else # define BOOST_HEAP_ASSERT( expression ) static_assert( true, "force semicolon" ) # endif #endif namespace boost { namespace heap { namespace detail { typedef parameter::parameters< boost::parameter::optional< tag::allocator >, boost::parameter::optional< tag::compare >, boost::parameter::optional< tag::stable >, boost::parameter::optional< tag::constant_time_size >, boost::parameter::optional< tag::stability_counter_type > > pairing_heap_signature; template < typename T, typename Parspec > struct make_pairing_heap_base { static const bool constant_time_size = parameter::binding< Parspec, tag::constant_time_size, std::true_type >::type::value; typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::type base_type; typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::allocator_argument allocator_argument; typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::compare_argument compare_argument; typedef heap_node< typename base_type::internal_type, false > node_type; typedef typename boost::allocator_rebind< allocator_argument, node_type >::type allocator_type; struct type : base_type, allocator_type { type( compare_argument const& arg ) : base_type( arg ) {} type( allocator_type const& arg ) : allocator_type( arg ) {} type( type const& rhs ) : base_type( rhs ), allocator_type( rhs ) {} type( type&& rhs ) : base_type( std::move( static_cast< base_type& >( rhs ) ) ), allocator_type( std::move( static_cast< allocator_type& >( rhs ) ) ) {} type& operator=( type&& rhs ) { base_type::operator=( std::move( static_cast< base_type& >( rhs ) ) ); allocator_type::operator=( std::move( static_cast< allocator_type& >( rhs ) ) ); return *this; } type& operator=( type const& rhs ) { base_type::operator=( static_cast< base_type const& >( rhs ) ); allocator_type::operator=( static_cast< const allocator_type& >( rhs ) ); return *this; } }; }; } // namespace detail /** * \class pairing_heap * \brief pairing heap * * Pairing heaps are self-adjusting binary heaps. Although design and implementation are rather simple, * the complexity analysis is yet unsolved. For details, consult: * * Pettie, Seth (2005), "Towards a final analysis of pairing heaps", * Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 174-183 * * The template parameter T is the type to be managed by the container. * The user can specify additional options and if no options are provided default options are used. * * The container supports the following options: * - \c boost::heap::compare<>, defaults to \c compare<std::less<T> > * - \c boost::heap::stable<>, defaults to \c stable<false> * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t> * - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> > * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true> * * */ #ifdef BOOST_DOXYGEN_INVOKED template < class T, class... Options > #else template < typename T, class A0 = boost::parameter::void_, class A1 = boost::parameter::void_, class A2 = boost::parameter::void_, class A3 = boost::parameter::void_, class A4 = boost::parameter::void_ > #endif class pairing_heap : private detail::make_pairing_heap_base< T, typename detail::pairing_heap_signature::bind< A0, A1, A2, A3, A4 >::type >::type { typedef typename detail::pairing_heap_signature::bind< A0, A1, A2, A3, A4 >::type bound_args; typedef detail::make_pairing_heap_base< T, bound_args > base_maker; typedef typename base_maker::type super_t; typedef typename super_t::internal_type internal_type; typedef typename super_t::size_holder_type size_holder; typedef typename base_maker::allocator_argument allocator_argument; private: template < typename Heap1, typename Heap2 > friend struct heap_merge_emulate; #ifndef BOOST_DOXYGEN_INVOKED struct implementation_defined : detail::extract_allocator_types< typename base_maker::allocator_argument > { typedef T value_type; typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::size_type size_type; typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::reference reference; typedef typename base_maker::compare_argument value_compare; typedef typename base_maker::allocator_type allocator_type; typedef typename boost::allocator_pointer< allocator_type >::type node_pointer; typedef typename boost::allocator_const_pointer< allocator_type >::type const_node_pointer; typedef detail::heap_node_list node_list_type; typedef typename node_list_type::iterator node_list_iterator; typedef typename node_list_type::const_iterator node_list_const_iterator; typedef typename base_maker::node_type node; typedef detail::value_extractor< value_type, internal_type, super_t > value_extractor; typedef typename super_t::internal_compare internal_compare; typedef detail::node_handle< node_pointer, super_t, reference > handle_type; typedef detail::tree_iterator< node, const value_type, allocator_type, value_extractor, detail::pointer_to_reference< node >, false, false, value_compare > iterator; typedef iterator const_iterator; typedef detail::tree_iterator< node, const value_type, allocator_type, value_extractor, detail::pointer_to_reference< node >, false, true, value_compare > ordered_iterator; }; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_pointer node_pointer; typedef typename implementation_defined::node_list_type node_list_type; typedef typename implementation_defined::node_list_iterator node_list_iterator; typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator; typedef typename implementation_defined::internal_compare internal_compare; typedef boost::intrusive::list< detail::heap_node_base< true >, boost::intrusive::constant_time_size< false > > node_child_list; #endif public: typedef T value_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::allocator_type allocator_type; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; /// \copydoc boost::heap::priority_queue::iterator typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::ordered_iterator ordered_iterator; typedef typename implementation_defined::handle_type handle_type; static const bool constant_time_size = super_t::constant_time_size; static const bool has_ordered_iterators = true; static const bool is_mergable = true; static const bool is_stable = detail::extract_stable< bound_args >::value; static const bool has_reserve = false; /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &) explicit pairing_heap( value_compare const& cmp = value_compare() ) : super_t( cmp ), root( nullptr ) {} /// \copydoc boost::heap::priority_queue::priority_queue(allocator_type const &) explicit pairing_heap( allocator_type const& alloc ) : super_t( alloc ), root( nullptr ) {} /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &) pairing_heap( pairing_heap const& rhs ) : super_t( rhs ), root( nullptr ) { if ( rhs.empty() ) return; clone_tree( rhs ); size_holder::set_size( rhs.get_size() ); } /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&) pairing_heap( pairing_heap&& rhs ) : super_t( std::move( rhs ) ), root( rhs.root ) { rhs.root = nullptr; } /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&) pairing_heap& operator=( pairing_heap&& rhs ) { super_t::operator=( std::move( rhs ) ); root = rhs.root; rhs.root = nullptr; return *this; } /// \copydoc boost::heap::priority_queue::operator=(priority_queue const & rhs) pairing_heap& operator=( pairing_heap const& rhs ) { clear(); size_holder::set_size( rhs.get_size() ); static_cast< super_t& >( *this ) = rhs; clone_tree( rhs ); return *this; } ~pairing_heap( void ) { while ( !empty() ) pop(); } /// \copydoc boost::heap::priority_queue::empty bool empty( void ) const { return root == nullptr; } /// \copydoc boost::heap::binomial_heap::size size_type size( void ) const { if ( constant_time_size ) return size_holder::get_size(); if ( root == nullptr ) return 0; else return detail::count_nodes( root ); } /// \copydoc boost::heap::priority_queue::max_size size_type max_size( void ) const { const allocator_type& alloc = *this; return boost::allocator_max_size( alloc ); } /// \copydoc boost::heap::priority_queue::clear void clear( void ) { if ( empty() ) return; root->template clear_subtree< allocator_type >( *this ); root->~node(); allocator_type& alloc = *this; alloc.deallocate( root, 1 ); root = nullptr; size_holder::set_size( 0 ); } /// \copydoc boost::heap::priority_queue::get_allocator allocator_type get_allocator( void ) const { return *this; } /// \copydoc boost::heap::priority_queue::swap void swap( pairing_heap& rhs ) { super_t::swap( rhs ); std::swap( root, rhs.root ); } /// \copydoc boost::heap::priority_queue::top const_reference top( void ) const { BOOST_ASSERT( !empty() ); return super_t::get_value( root->value ); } /** * \b Effects: Adds a new element to the priority queue. Returns handle to element * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * */ handle_type push( value_type const& v ) { size_holder::increment(); allocator_type& alloc = *this; node_pointer n = alloc.allocate( 1 ); new ( n ) node( super_t::make_node( v ) ); merge_node( n ); return handle_type( n ); } /** * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns * handle to element. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * */ template < class... Args > handle_type emplace( Args&&... args ) { size_holder::increment(); allocator_type& alloc = *this; node_pointer n = alloc.allocate( 1 ); new ( n ) node( super_t::make_node( std::forward< Args >( args )... ) ); merge_node( n ); return handle_type( n ); } /** * \b Effects: Removes the top element from the priority queue. * * \b Complexity: Logarithmic (amortized). * * */ void pop( void ) { BOOST_ASSERT( !empty() ); erase( handle_type( root ) ); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * */ void update( handle_type handle, const_reference v ) { handle.node_->value = super_t::make_node( v ); update( handle ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void update( handle_type handle ) { node_pointer n = handle.node_; n->unlink(); if ( !n->children.empty() ) n = merge_nodes( n, merge_node_list( n->children ) ); if ( n != root ) merge_node( n ); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * \b Note: The new value is expected to be greater than the current one * */ void increase( handle_type handle, const_reference v ) { update( handle, v ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void increase( handle_type handle ) { update( handle ); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * \b Note: The new value is expected to be less than the current one * */ void decrease( handle_type handle, const_reference v ) { update( handle, v ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has * been updated, the behavior of the data structure is undefined! * */ void decrease( handle_type handle ) { update( handle ); } /** * \b Effects: Removes the element handled by \c handle from the priority_queue. * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * */ void erase( handle_type handle ) { node_pointer n = handle.node_; if ( n != root ) { n->unlink(); if ( !n->children.empty() ) merge_node( merge_node_list( n->children ) ); } else { if ( !n->children.empty() ) root = merge_node_list( n->children ); else root = nullptr; } size_holder::decrement(); n->~node(); allocator_type& alloc = *this; alloc.deallocate( n, 1 ); } /// \copydoc boost::heap::priority_queue::begin iterator begin( void ) const { return iterator( root, super_t::value_comp() ); } /// \copydoc boost::heap::priority_queue::end iterator end( void ) const { return iterator( super_t::value_comp() ); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_begin( void ) const { return ordered_iterator( root, super_t::value_comp() ); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_end( void ) const { return ordered_iterator( nullptr, super_t::value_comp() ); } /// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator static handle_type s_handle_from_iterator( iterator const& it ) { node* ptr = const_cast< node* >( it.get_node() ); return handle_type( ptr ); } /** * \b Effects: Merge all elements from rhs into this * * \cond * \b Complexity: \f$2^2log(log(N))\f$ (amortized). * \endcond * * \b Complexity: 2**2*log(log(N)) (amortized). * * */ void merge( pairing_heap& rhs ) { if ( rhs.empty() ) return; merge_node( rhs.root ); size_holder::add( rhs.get_size() ); rhs.set_size( 0 ); rhs.root = nullptr; super_t::set_stability_count( ( std::max )( super_t::get_stability_count(), rhs.get_stability_count() ) ); rhs.set_stability_count( 0 ); } /// \copydoc boost::heap::priority_queue::value_comp value_compare const& value_comp( void ) const { return super_t::value_comp(); } /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const template < typename HeapType > bool operator<( HeapType const& rhs ) const { return detail::heap_compare( *this, rhs ); } /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const template < typename HeapType > bool operator>( HeapType const& rhs ) const { return detail::heap_compare( rhs, *this ); } /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const template < typename HeapType > bool operator>=( HeapType const& rhs ) const { return !operator<( rhs ); } /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const template < typename HeapType > bool operator<=( HeapType const& rhs ) const { return !operator>( rhs ); } /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const template < typename HeapType > bool operator==( HeapType const& rhs ) const { return detail::heap_equality( *this, rhs ); } /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const template < typename HeapType > bool operator!=( HeapType const& rhs ) const { return !( *this == rhs ); } private: #if !defined( BOOST_DOXYGEN_INVOKED ) void clone_tree( pairing_heap const& rhs ) { BOOST_HEAP_ASSERT( root == nullptr ); if ( rhs.empty() ) return; root = allocator_type::allocate( 1 ); new ( root ) node( static_cast< node const& >( *rhs.root ), static_cast< allocator_type& >( *this ) ); } void merge_node( node_pointer other ) { BOOST_HEAP_ASSERT( other ); if ( root != nullptr ) root = merge_nodes( root, other ); else root = other; } node_pointer merge_node_list( node_child_list& children ) { BOOST_HEAP_ASSERT( !children.empty() ); node_pointer merged = merge_first_pair( children ); if ( children.empty() ) return merged; node_child_list node_list; node_list.push_back( *merged ); do { node_pointer next_merged = merge_first_pair( children ); node_list.push_back( *next_merged ); } while ( !children.empty() ); return merge_node_list( node_list ); } node_pointer merge_first_pair( node_child_list& children ) { BOOST_HEAP_ASSERT( !children.empty() ); node_pointer first_child = static_cast< node_pointer >( &children.front() ); children.pop_front(); if ( children.empty() ) return first_child; node_pointer second_child = static_cast< node_pointer >( &children.front() ); children.pop_front(); return merge_nodes( first_child, second_child ); } node_pointer merge_nodes( node_pointer node1, node_pointer node2 ) { if ( super_t::operator()( node1->value, node2->value ) ) std::swap( node1, node2 ); node2->unlink(); node1->children.push_front( *node2 ); return node1; } node_pointer root; #endif }; }} // namespace boost::heap #undef BOOST_HEAP_ASSERT #endif /* BOOST_HEAP_PAIRING_HEAP_HPP */