boost/heap/skew_heap.hpp
// boost heap: skew heap // // Copyright (C) 2010 Tim Blechmann // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HEAP_SKEW_HEAP_HPP #define BOOST_HEAP_SKEW_HEAP_HPP #include <algorithm> #include <array> #include <type_traits> #include <utility> #include <boost/assert.hpp> #include <boost/heap/detail/heap_comparison.hpp> #include <boost/heap/detail/heap_node.hpp> #include <boost/heap/detail/stable_heap.hpp> #include <boost/heap/detail/tree_iterator.hpp> #ifdef BOOST_HAS_PRAGMA_ONCE # pragma once #endif #ifndef BOOST_DOXYGEN_INVOKED # ifdef BOOST_HEAP_SANITYCHECKS # define BOOST_HEAP_ASSERT BOOST_ASSERT # else # define BOOST_HEAP_ASSERT( expression ) static_assert( true, "force semicolon" ) # endif #endif namespace boost { namespace heap { namespace detail { template < typename node_pointer, bool store_parent_pointer > struct parent_holder { parent_holder( void ) : parent_( nullptr ) {} void set_parent( node_pointer parent ) { BOOST_HEAP_ASSERT( static_cast< node_pointer >( this ) != parent ); parent_ = parent; } node_pointer get_parent( void ) const { return parent_; } node_pointer parent_; }; template < typename node_pointer > struct parent_holder< node_pointer, false > { void set_parent( node_pointer /*parent*/ ) {} node_pointer get_parent( void ) const { return nullptr; } }; template < typename value_type, bool store_parent_pointer > struct skew_heap_node : parent_holder< skew_heap_node< value_type, store_parent_pointer >*, store_parent_pointer > { typedef parent_holder< skew_heap_node< value_type, store_parent_pointer >*, store_parent_pointer > super_t; typedef std::array< skew_heap_node*, 2 > child_list_type; typedef typename child_list_type::iterator child_iterator; typedef typename child_list_type::const_iterator const_child_iterator; skew_heap_node( value_type const& v ) : value( v ) { children.fill( 0 ); } skew_heap_node( value_type&& v ) : value( v ) { children.fill( 0 ); } template < typename Alloc > skew_heap_node( skew_heap_node const& rhs, Alloc& allocator, skew_heap_node* parent ) : value( rhs.value ) { super_t::set_parent( parent ); node_cloner< skew_heap_node, skew_heap_node, Alloc > cloner( allocator ); clone_child( 0, rhs, cloner ); clone_child( 1, rhs, cloner ); } template < typename Cloner > void clone_child( int index, skew_heap_node const& rhs, Cloner& cloner ) { if ( rhs.children[ index ] ) children[ index ] = cloner( *rhs.children[ index ], this ); else children[ index ] = nullptr; } template < typename Alloc > void clear_subtree( Alloc& alloc ) { node_disposer< skew_heap_node, skew_heap_node, Alloc > disposer( alloc ); dispose_child( children[ 0 ], disposer ); dispose_child( children[ 1 ], disposer ); } template < typename Disposer > void dispose_child( skew_heap_node* node, Disposer& disposer ) { if ( node ) disposer( node ); } std::size_t count_children( void ) const { size_t ret = 1; if ( children[ 0 ] ) ret += children[ 0 ]->count_children(); if ( children[ 1 ] ) ret += children[ 1 ]->count_children(); return ret; } template < typename HeapBase > bool is_heap( typename HeapBase::value_compare const& cmp ) const { for ( const_child_iterator it = children.begin(); it != children.end(); ++it ) { const skew_heap_node* child = *it; if ( child == nullptr ) continue; if ( store_parent_pointer ) BOOST_HEAP_ASSERT( child->get_parent() == this ); if ( cmp( HeapBase::get_value( value ), HeapBase::get_value( child->value ) ) || !child->is_heap< HeapBase >( cmp ) ) return false; } return true; } value_type value; std::array< skew_heap_node*, 2 > children; }; typedef parameter::parameters< boost::parameter::optional< tag::allocator >, boost::parameter::optional< tag::compare >, boost::parameter::optional< tag::stable >, boost::parameter::optional< tag::store_parent_pointer >, boost::parameter::optional< tag::stability_counter_type >, boost::parameter::optional< tag::constant_time_size >, boost::parameter::optional< tag::mutable_ > > skew_heap_signature; template < typename T, typename BoundArgs > struct make_skew_heap_base { static const bool constant_time_size = parameter::binding< BoundArgs, tag::constant_time_size, std::true_type >::type::value; typedef typename make_heap_base< T, BoundArgs, constant_time_size >::type base_type; typedef typename make_heap_base< T, BoundArgs, constant_time_size >::allocator_argument allocator_argument; typedef typename make_heap_base< T, BoundArgs, constant_time_size >::compare_argument compare_argument; static const bool is_mutable = extract_mutable< BoundArgs >::value; static const bool store_parent_pointer = parameter::binding< BoundArgs, tag::store_parent_pointer, boost::false_type >::type::value || is_mutable; typedef skew_heap_node< typename base_type::internal_type, store_parent_pointer > node_type; typedef typename boost::allocator_rebind< allocator_argument, node_type >::type allocator_type; struct type : base_type, allocator_type { type( compare_argument const& arg ) : base_type( arg ) {} type( allocator_type const& arg ) : allocator_type( arg ) {} type( type&& rhs ) : base_type( std::move( static_cast< base_type& >( rhs ) ) ), allocator_type( std::move( static_cast< allocator_type& >( rhs ) ) ) {} type( type const& rhs ) : base_type( rhs ), allocator_type( rhs ) {} type& operator=( type&& rhs ) { base_type::operator=( std::move( static_cast< base_type& >( rhs ) ) ); allocator_type::operator=( std::move( static_cast< allocator_type& >( rhs ) ) ); return *this; } type& operator=( type const& rhs ) { base_type::operator=( static_cast< base_type const& >( rhs ) ); allocator_type::operator=( static_cast< allocator_type const& >( rhs ) ); return *this; } }; }; } /* namespace detail */ /** * \class skew_heap * \brief skew heap * * * The template parameter T is the type to be managed by the container. * The user can specify additional options and if no options are provided default options are used. * * The container supports the following options: * - \c boost::heap::compare<>, defaults to \c compare<std::less<T> > * - \c boost::heap::stable<>, defaults to \c stable<false> * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t> * - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> > * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true> * - \c boost::heap::store_parent_pointer<>, defaults to \c store_parent_pointer<true>. Maintaining a parent pointer * adds some maintenance and size overhead, but iterating a heap is more efficient. * - \c boost::heap::mutable<>, defaults to \c mutable<false>. * */ #ifdef BOOST_DOXYGEN_INVOKED template < class T, class... Options > #else template < typename T, class A0 = boost::parameter::void_, class A1 = boost::parameter::void_, class A2 = boost::parameter::void_, class A3 = boost::parameter::void_, class A4 = boost::parameter::void_, class A5 = boost::parameter::void_, class A6 = boost::parameter::void_ > #endif class skew_heap : private detail::make_skew_heap_base< T, typename detail::skew_heap_signature::bind< A0, A1, A2, A3, A4, A5, A6 >::type >::type { typedef typename detail::skew_heap_signature::bind< A0, A1, A2, A3, A4, A5, A6 >::type bound_args; typedef detail::make_skew_heap_base< T, bound_args > base_maker; typedef typename base_maker::type super_t; typedef typename super_t::internal_type internal_type; typedef typename super_t::size_holder_type size_holder; typedef typename base_maker::allocator_argument allocator_argument; static const bool store_parent_pointer = base_maker::store_parent_pointer; template < typename Heap1, typename Heap2 > friend struct heap_merge_emulate; struct implementation_defined : detail::extract_allocator_types< typename base_maker::allocator_argument > { typedef T value_type; typedef typename base_maker::compare_argument value_compare; typedef typename base_maker::allocator_type allocator_type; typedef typename base_maker::node_type node; typedef typename boost::allocator_pointer< allocator_type >::type node_pointer; typedef typename boost::allocator_const_pointer< allocator_type >::type const_node_pointer; typedef detail::value_extractor< value_type, internal_type, super_t > value_extractor; typedef std::array< node_pointer, 2 > child_list_type; typedef typename child_list_type::iterator child_list_iterator; typedef typename std::conditional< false, detail::recursive_tree_iterator< node, child_list_iterator, const value_type, value_extractor, detail::list_iterator_converter< node, child_list_type > >, detail::tree_iterator< node, const value_type, allocator_type, value_extractor, detail::dereferencer< node >, true, false, value_compare > >::type iterator; typedef iterator const_iterator; typedef detail:: tree_iterator< node, const value_type, allocator_type, value_extractor, detail::dereferencer< node >, true, true, value_compare > ordered_iterator; typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::reference reference; typedef detail::node_handle< node_pointer, super_t, reference > handle_type; }; typedef typename implementation_defined::value_extractor value_extractor; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_pointer node_pointer; public: typedef T value_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::allocator_type allocator_type; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; /// \copydoc boost::heap::priority_queue::iterator typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::ordered_iterator ordered_iterator; static const bool constant_time_size = super_t::constant_time_size; static const bool has_ordered_iterators = true; static const bool is_mergable = true; static const bool is_stable = detail::extract_stable< bound_args >::value; static const bool has_reserve = false; static const bool is_mutable = detail::extract_mutable< bound_args >::value; typedef typename std::conditional< is_mutable, typename implementation_defined::handle_type, void* >::type handle_type; /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &) explicit skew_heap( value_compare const& cmp = value_compare() ) : super_t( cmp ), root( nullptr ) {} /// \copydoc boost::heap::priority_queue::priority_queue(allocator_type const &) explicit skew_heap( allocator_type const& alloc ) : super_t( alloc ), root( 0 ) {} /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &) skew_heap( skew_heap const& rhs ) : super_t( rhs ), root( 0 ) { if ( rhs.empty() ) return; clone_tree( rhs ); size_holder::set_size( rhs.get_size() ); } /// \copydoc boost::heap::priority_queue::operator=(priority_queue const & rhs) skew_heap& operator=( skew_heap const& rhs ) { clear(); size_holder::set_size( rhs.get_size() ); static_cast< super_t& >( *this ) = rhs; clone_tree( rhs ); return *this; } /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&) skew_heap( skew_heap&& rhs ) : super_t( std::move( rhs ) ), root( rhs.root ) { rhs.root = nullptr; } /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&) skew_heap& operator=( skew_heap&& rhs ) { super_t::operator=( std::move( rhs ) ); root = rhs.root; rhs.root = nullptr; return *this; } ~skew_heap( void ) { clear(); } /** * \b Effects: Adds a new element to the priority queue. * * \b Complexity: Logarithmic (amortized). * * */ typename std::conditional< is_mutable, handle_type, void >::type push( value_type const& v ) { typedef typename std::conditional< is_mutable, push_handle, push_void >::type push_helper; return push_helper::push( this, v ); } /** * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. * * \b Complexity: Logarithmic (amortized). * * */ template < typename... Args > typename std::conditional< is_mutable, handle_type, void >::type emplace( Args&&... args ) { typedef typename std::conditional< is_mutable, push_handle, push_void >::type push_helper; return push_helper::emplace( this, std::forward< Args >( args )... ); } /// \copydoc boost::heap::priority_queue::empty bool empty( void ) const { return root == nullptr; } /// \copydoc boost::heap::binomial_heap::size size_type size( void ) const { if ( constant_time_size ) return size_holder::get_size(); if ( root == nullptr ) return 0; else return root->count_children(); } /// \copydoc boost::heap::priority_queue::max_size size_type max_size( void ) const { const allocator_type& alloc = *this; return boost::allocator_max_size( alloc ); } /// \copydoc boost::heap::priority_queue::clear void clear( void ) { if ( empty() ) return; root->template clear_subtree< allocator_type >( *this ); root->~node(); allocator_type& alloc = *this; alloc.deallocate( root, 1 ); root = nullptr; size_holder::set_size( 0 ); } /// \copydoc boost::heap::priority_queue::get_allocator allocator_type get_allocator( void ) const { return *this; } /// \copydoc boost::heap::priority_queue::swap void swap( skew_heap& rhs ) { super_t::swap( rhs ); std::swap( root, rhs.root ); } /// \copydoc boost::heap::priority_queue::top const_reference top( void ) const { BOOST_ASSERT( !empty() ); return super_t::get_value( root->value ); } /** * \b Effects: Removes the top element from the priority queue. * * \b Complexity: Logarithmic (amortized). * * */ void pop( void ) { BOOST_ASSERT( !empty() ); node_pointer top = root; root = merge_children( root ); size_holder::decrement(); if ( root ) BOOST_HEAP_ASSERT( root->get_parent() == nullptr ); else BOOST_HEAP_ASSERT( size_holder::get_size() == 0 ); top->~node(); allocator_type& alloc = *this; alloc.deallocate( top, 1 ); sanity_check(); } /// \copydoc boost::heap::priority_queue::begin iterator begin( void ) const { return iterator( root, super_t::value_comp() ); } /// \copydoc boost::heap::priority_queue::end iterator end( void ) const { return iterator(); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_begin( void ) const { return ordered_iterator( root, super_t::value_comp() ); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_end( void ) const { return ordered_iterator( 0, super_t::value_comp() ); } /** * \b Effects: Merge all elements from rhs into this * * \b Complexity: Logarithmic (amortized). * * */ void merge( skew_heap& rhs ) { if ( rhs.empty() ) return; merge_node( rhs.root ); size_holder::add( rhs.get_size() ); rhs.set_size( 0 ); rhs.root = nullptr; sanity_check(); super_t::set_stability_count( ( std::max )( super_t::get_stability_count(), rhs.get_stability_count() ) ); rhs.set_stability_count( 0 ); } /// \copydoc boost::heap::priority_queue::value_comp value_compare const& value_comp( void ) const { return super_t::value_comp(); } /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const template < typename HeapType > bool operator<( HeapType const& rhs ) const { return detail::heap_compare( *this, rhs ); } /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const template < typename HeapType > bool operator>( HeapType const& rhs ) const { return detail::heap_compare( rhs, *this ); } /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const template < typename HeapType > bool operator>=( HeapType const& rhs ) const { return !operator<( rhs ); } /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const template < typename HeapType > bool operator<=( HeapType const& rhs ) const { return !operator>( rhs ); } /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const template < typename HeapType > bool operator==( HeapType const& rhs ) const { return detail::heap_equality( *this, rhs ); } /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const template < typename HeapType > bool operator!=( HeapType const& rhs ) const { return !( *this == rhs ); } /// \copydoc boost::heap::d_ary_heap::s_handle_from_iterator static handle_type s_handle_from_iterator( iterator const& it ) { node* ptr = const_cast< node* >( it.get_node() ); return handle_type( ptr ); } /** * \b Effects: Removes the element handled by \c handle from the priority_queue. * * \b Complexity: Logarithmic (amortized). * */ void erase( handle_type object ) { BOOST_STATIC_ASSERT( is_mutable ); node_pointer this_node = object.node_; unlink_node( this_node ); size_holder::decrement(); sanity_check(); this_node->~node(); allocator_type& alloc = *this; alloc.deallocate( this_node, 1 ); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic (amortized). * * */ void update( handle_type handle, const_reference v ) { BOOST_STATIC_ASSERT( is_mutable ); if ( super_t::operator()( super_t::get_value( handle.node_->value ), v ) ) increase( handle, v ); else decrease( handle, v ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic (amortized). * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void update( handle_type handle ) { BOOST_STATIC_ASSERT( is_mutable ); node_pointer this_node = handle.node_; if ( this_node->get_parent() ) { if ( super_t::operator()( super_t::get_value( this_node->get_parent()->value ), super_t::get_value( this_node->value ) ) ) increase( handle ); else decrease( handle ); } else decrease( handle ); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic (amortized). * * \b Note: The new value is expected to be greater than the current one * */ void increase( handle_type handle, const_reference v ) { BOOST_STATIC_ASSERT( is_mutable ); handle.node_->value = super_t::make_node( v ); increase( handle ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic (amortized). * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void increase( handle_type handle ) { BOOST_STATIC_ASSERT( is_mutable ); node_pointer this_node = handle.node_; if ( this_node == root ) return; node_pointer parent = this_node->get_parent(); if ( this_node == parent->children[ 0 ] ) parent->children[ 0 ] = nullptr; else parent->children[ 1 ] = nullptr; this_node->set_parent( nullptr ); merge_node( this_node ); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic (amortized). * * \b Note: The new value is expected to be less than the current one * */ void decrease( handle_type handle, const_reference v ) { BOOST_STATIC_ASSERT( is_mutable ); handle.node_->value = super_t::make_node( v ); decrease( handle ); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic (amortized). * * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has * been updated, the behavior of the data structure is undefined! * */ void decrease( handle_type handle ) { BOOST_STATIC_ASSERT( is_mutable ); node_pointer this_node = handle.node_; unlink_node( this_node ); this_node->children.fill( 0 ); this_node->set_parent( nullptr ); merge_node( this_node ); } private: #if !defined( BOOST_DOXYGEN_INVOKED ) struct push_void { static void push( skew_heap* self, const_reference v ) { self->push_internal( v ); } template < class... Args > static void emplace( skew_heap* self, Args&&... args ) { self->emplace_internal( std::forward< Args >( args )... ); } }; struct push_handle { static handle_type push( skew_heap* self, const_reference v ) { return handle_type( self->push_internal( v ) ); } template < class... Args > static handle_type emplace( skew_heap* self, Args&&... args ) { return handle_type( self->emplace_internal( std::forward< Args >( args )... ) ); } }; node_pointer push_internal( const_reference v ) { size_holder::increment(); allocator_type& alloc = *this; node_pointer n = alloc.allocate( 1 ); new ( n ) node( super_t::make_node( v ) ); merge_node( n ); return n; } template < class... Args > node_pointer emplace_internal( Args&&... args ) { size_holder::increment(); allocator_type& alloc = *this; node_pointer n = alloc.allocate( 1 ); new ( n ) node( super_t::make_node( std::forward< Args >( args )... ) ); merge_node( n ); return n; } void unlink_node( node_pointer node ) { node_pointer parent = node->get_parent(); node_pointer merged_children = merge_children( node ); if ( parent ) { if ( node == parent->children[ 0 ] ) parent->children[ 0 ] = merged_children; else parent->children[ 1 ] = merged_children; } else root = merged_children; } void clone_tree( skew_heap const& rhs ) { BOOST_HEAP_ASSERT( root == nullptr ); if ( rhs.empty() ) return; allocator_type& alloc = *this; root = alloc.allocate( 1 ); new ( root ) node( *rhs.root, alloc, nullptr ); } void merge_node( node_pointer other ) { BOOST_HEAP_ASSERT( other ); if ( root != nullptr ) root = merge_nodes( root, other, nullptr ); else root = other; } node_pointer merge_nodes( node_pointer node1, node_pointer node2, node_pointer new_parent ) { if ( node1 == nullptr ) { if ( node2 ) node2->set_parent( new_parent ); return node2; } if ( node2 == nullptr ) { node1->set_parent( new_parent ); return node1; } node_pointer merged = merge_nodes_recursive( node1, node2, new_parent ); return merged; } node_pointer merge_children( node_pointer node ) { node_pointer parent = node->get_parent(); node_pointer merged_children = merge_nodes( node->children[ 0 ], node->children[ 1 ], parent ); return merged_children; } node_pointer merge_nodes_recursive( node_pointer node1, node_pointer node2, node_pointer new_parent ) { if ( super_t::operator()( node1->value, node2->value ) ) std::swap( node1, node2 ); node* parent = node1; node* child = node2; if ( parent->children[ 1 ] ) { node* merged = merge_nodes( parent->children[ 1 ], child, parent ); parent->children[ 1 ] = merged; merged->set_parent( parent ); } else { parent->children[ 1 ] = child; child->set_parent( parent ); } std::swap( parent->children[ 0 ], parent->children[ 1 ] ); parent->set_parent( new_parent ); return parent; } void sanity_check( void ) { # ifdef BOOST_HEAP_SANITYCHECKS if ( root ) BOOST_HEAP_ASSERT( root->template is_heap< super_t >( super_t::value_comp() ) ); if ( constant_time_size ) { size_type stored_size = size_holder::get_size(); size_type counted_size; if ( root == nullptr ) counted_size = 0; else counted_size = root->count_children(); BOOST_HEAP_ASSERT( counted_size == stored_size ); } # endif } node_pointer root; #endif }; }} // namespace boost::heap #undef BOOST_HEAP_ASSERT #endif /* BOOST_HEAP_SKEW_HEAP_HPP */