boost/random/generalized_inverse_gaussian_distribution.hpp
/* boost random/generalized_inverse_gaussian_distribution.hpp header file
*
* Copyright Young Geun Kim 2025
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id$
*/
#ifndef BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP
#define BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <istream>
#include <iosfwd>
#include <limits>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/uniform_01.hpp>
namespace boost {
namespace random {
/**
* The generalized inverse gaussian distribution is a real-valued distribution with
* three parameters p, a, and b. It produced values > 0.
*
* It has
* \f$\displaystyle p(x) = \frac{(a / b)^{p / 2}}{2 K_{p}(\sqrt{a b})} x^{p - 1} e^{-(a x + b / 2) / 2}\f$.
* where \f$\displaystyle K_{p}\f$ is a modified Bessel function of the second kind.
*
* The algorithm used is from
*
* @blockquote
* "Random variate generation for the generalized inverse Gaussian distribution",
* Luc Devroye,
* Statistics and Computing,
* Volume 24, 2014, Pages 236 - 246
* @endblockquote
*/
template<class RealType = double>
class generalized_inverse_gaussian_distribution
{
public:
typedef RealType result_type;
typedef RealType input_type;
class param_type {
public:
typedef generalized_inverse_gaussian_distribution distribution_type;
/**
* Constructs a @c param_type object from the "p", "a", and "b"
* parameters.
*
* Requires:
* a > 0 && b >= 0 if p > 0,
* a > 0 && b > 0 if p == 0,
* a >= 0 && b > 0 if p < 0
*/
explicit param_type(RealType p_arg = RealType(1.0),
RealType a_arg = RealType(1.0),
RealType b_arg = RealType(1.0))
: _p(p_arg), _a(a_arg), _b(b_arg)
{
BOOST_ASSERT(
(p_arg > RealType(0) && a_arg > RealType(0) && b_arg >= RealType(0)) ||
(p_arg == RealType(0) && a_arg > RealType(0) && b_arg > RealType(0)) ||
(p_arg < RealType(0) && a_arg >= RealType(0) && b_arg > RealType(0))
);
}
/** Returns the "p" parameter of the distribution. */
RealType p() const { return _p; }
/** Returns the "a" parameter of the distribution. */
RealType a() const { return _a; }
/** Returns the "b" parameter of the distribution. */
RealType b() const { return _b; }
/** Writes a @c param_type to a @c std::ostream. */
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
{
os << parm._p << ' ' << parm._a << ' ' << parm._b;
return os;
}
/** Reads a @c param_type from a @c std::istream. */
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
{
is >> parm._p >> std::ws >> parm._a >> std::ws >> parm._b;
return is;
}
/** Returns true if the two sets of parameters are the same. */
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
{ return lhs._p == rhs._p && lhs._a == rhs._a && lhs._b == rhs._b; }
/** Returns true if the two sets of parameters are different. */
BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)
private:
RealType _p;
RealType _a;
RealType _b;
};
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer);
#endif
/**
* Constructs an @c generalized_inverse_gaussian_distribution from its "p", "a", and "b" parameters.
*
* Requires:
* a > 0 && b >= 0 if p > 0,
* a > 0 && b > 0 if p == 0,
* a >= 0 && b > 0 if p < 0
*/
explicit generalized_inverse_gaussian_distribution(RealType p_arg = RealType(1.0),
RealType a_arg = RealType(1.0),
RealType b_arg = RealType(1.0))
: _p(p_arg), _a(a_arg), _b(b_arg)
{
BOOST_ASSERT(
(p_arg > RealType(0) && a_arg > RealType(0) && b_arg >= RealType(0)) ||
(p_arg == RealType(0) && a_arg > RealType(0) && b_arg > RealType(0)) ||
(p_arg < RealType(0) && a_arg >= RealType(0) && b_arg > RealType(0))
);
init();
}
/** Constructs an @c generalized_inverse_gaussian_distribution from its parameters. */
explicit generalized_inverse_gaussian_distribution(const param_type& parm)
: _p(parm.p()), _a(parm.a()), _b(parm.b())
{
init();
}
/**
* Returns a random variate distributed according to the
* generalized inverse gaussian distribution.
*/
template<class URNG>
RealType operator()(URNG& urng) const
{
#ifndef BOOST_NO_STDC_NAMESPACE
using std::sqrt;
using std::log;
using std::min;
using std::exp;
using std::cosh;
#endif
RealType t = result_type(1);
RealType s = result_type(1);
RealType log_concave = -psi(result_type(1));
if (log_concave >= result_type(.5) && log_concave <= result_type(2)) {
t = result_type(1);
} else if (log_concave > result_type(2)) {
t = sqrt(result_type(2) / (_alpha + _abs_p));
} else if (log_concave < result_type(.5)) {
t = log(result_type(4) / (_alpha + result_type(2) * _abs_p));
}
log_concave = -psi(result_type(-1));
if (log_concave >= result_type(.5) && log_concave <= result_type(2)) {
s = result_type(1);
} else if (log_concave > result_type(2)) {
s = sqrt(result_type(4) / (_alpha * cosh(1) + _abs_p));
} else if (log_concave < result_type(.5)) {
s = min(result_type(1) / _abs_p, log(result_type(1) + result_type(1) / _alpha + sqrt(result_type(1) / (_alpha * _alpha) + result_type(2) / _alpha)));
}
RealType eta = -psi(t);
RealType zeta = -psi_deriv(t);
RealType theta = -psi(-s);
RealType xi = psi_deriv(-s);
RealType p = result_type(1) / xi;
RealType r = result_type(1) / zeta;
RealType t_deriv = t - r * eta;
RealType s_deriv = s - p * theta;
RealType q = t_deriv + s_deriv;
RealType u = result_type(0);
RealType v = result_type(0);
RealType w = result_type(0);
RealType cand = result_type(0);
do
{
u = uniform_01<RealType>()(urng);
v = uniform_01<RealType>()(urng);
w = uniform_01<RealType>()(urng);
if (u < q / (p + q + r)) {
cand = -s_deriv + q * v;
} else if (u < (q + r) / (p + q + r)) {
cand = t_deriv - r * log(v);
} else {
cand = -s_deriv + p * log(v);
}
} while (w * chi(cand, s, t, s_deriv, t_deriv, eta, zeta, theta, xi) > exp(psi(cand)));
cand = (_abs_p / _omega + sqrt(result_type(1) + _abs_p * _abs_p / (_omega * _omega))) * exp(cand);
return _p > 0 ? cand * sqrt(_b / _a) : sqrt(_b / _a) / cand;
}
/**
* Returns a random variate distributed accordint to the beta
* distribution with parameters specified by @c param.
*/
template<class URNG>
result_type operator()(URNG& urng, const param_type& parm) const
{
return generalized_inverse_gaussian_distribution(parm)(urng);
}
/** Returns the "p" parameter of the distribution. */
RealType p() const { return _p; }
/** Returns the "a" parameter of the distribution. */
RealType a() const { return _a; }
/** Returns the "b" parameter of the distribution. */
RealType b() const { return _b; }
/** Returns the smallest value that the distribution can produce. */
RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const
{ return RealType(0.0); }
/** Returns the largest value that the distribution can produce. */
RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
{ return (std::numeric_limits<RealType>::infinity)(); }
/** Returns the parameters of the distribution. */
param_type param() const { return param_type(_p, _a, _b); }
/** Sets the parameters of the distribution. */
void param(const param_type& parm)
{
_p = parm.p();
_a = parm.a();
_b = parm.b();
init();
}
/**
* Effects: Subsequent uses of the distribution do not depend
* on values produced by any engine prior to invoking reset.
*/
void reset() { }
/** Writes an @c generalized_inverse_gaussian_distribution to a @c std::ostream. */
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, generalized_inverse_gaussian_distribution, wd)
{
os << wd.param();
return os;
}
/** Reads an @c generalized_inverse_gaussian_distribution from a @c std::istream. */
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, generalized_inverse_gaussian_distribution, wd)
{
param_type parm;
if(is >> parm) {
wd.param(parm);
}
return is;
}
/**
* Returns true if the two instances of @c generalized_inverse_gaussian_distribution will
* return identical sequences of values given equal generators.
*/
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(generalized_inverse_gaussian_distribution, lhs, rhs)
{ return lhs._p == rhs._p && lhs._a == rhs._a && lhs._b == rhs._b; }
/**
* Returns true if the two instances of @c generalized_inverse_gaussian_distribution will
* return different sequences of values given equal generators.
*/
BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(generalized_inverse_gaussian_distribution)
private:
RealType _p;
RealType _a;
RealType _b;
// some data precomputed from the parameters
RealType _abs_p;
RealType _omega;
RealType _alpha;
/// \cond hide_private_members
void init()
{
#ifndef BOOST_NO_STDC_NAMESPACE
using std::abs;
using std::sqrt;
#endif
_abs_p = abs(_p);
_omega = sqrt(_a * _b); // two-parameter representation (p, omega)
_alpha = sqrt(_omega * _omega + _abs_p * _abs_p) - _abs_p;
}
result_type psi(const RealType& x) const
{
#ifndef BOOST_NO_STDC_NAMESPACE
using std::cosh;
using std::exp;
#endif
return -_alpha * (cosh(x) - result_type(1)) - _abs_p * (exp(x) - x - result_type(1));
}
result_type psi_deriv(const RealType& x) const
{
#ifndef BOOST_NO_STDC_NAMESPACE
using std::sinh;
using std::exp;
#endif
return -_alpha * sinh(x) - _abs_p * (exp(x) - result_type(1));
}
static result_type chi(const RealType& x,
const RealType& s, const RealType& t,
const RealType& s_deriv, const RealType& t_deriv,
const RealType& eta, const RealType& zeta, const RealType& theta, const RealType& xi)
{
#ifndef BOOST_NO_STDC_NAMESPACE
using std::exp;
#endif
if (x >= -s_deriv && x <= t_deriv) {
return result_type(1);
} else if (x > t_deriv) {
return exp(-eta - zeta * (x - t));
}
return exp(-theta + xi * (x + s));
}
/// \endcond
};
} // namespace random
using random::generalized_inverse_gaussian_distribution;
} // namespace boost
#endif // BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP