boost/math/special_functions/round.hpp
// Copyright John Maddock 2007. // Copyright Matt Borland 2023. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_ROUND_HPP #define BOOST_MATH_ROUND_HPP #ifdef _MSC_VER #pragma once #endif #include <boost/math/tools/config.hpp> #ifndef BOOST_MATH_HAS_NVRTC #include <boost/math/ccmath/detail/config.hpp> #include <boost/math/policies/error_handling.hpp> #include <boost/math/special_functions/math_fwd.hpp> #include <boost/math/special_functions/fpclassify.hpp> #include <type_traits> #include <limits> #include <cmath> #if !defined(BOOST_MATH_NO_CCMATH) && !defined(BOOST_MATH_NO_CONSTEXPR_DETECTION) #include <boost/math/ccmath/ldexp.hpp> # define BOOST_MATH_HAS_CONSTEXPR_LDEXP #endif namespace boost{ namespace math{ namespace detail{ template <class T, class Policy> BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T> round(const T& v, const Policy& pol, const std::false_type&) { BOOST_MATH_STD_USING using result_type = tools::promote_args_t<T>; if(!(boost::math::isfinite)(v)) { return policies::raise_rounding_error("boost::math::round<%1%>(%1%)", nullptr, static_cast<result_type>(v), static_cast<result_type>(v), pol); } // // The logic here is rather convoluted, but avoids a number of traps, // see discussion here https://github.com/boostorg/math/pull/8 // if (T(-0.5) < v && v < T(0.5)) { // special case to avoid rounding error on the direct // predecessor of +0.5 resp. the direct successor of -0.5 in // IEEE floating point types return static_cast<result_type>(0); } else if (v > 0) { // subtract v from ceil(v) first in order to avoid rounding // errors on largest representable integer numbers result_type c(ceil(v)); return T(0.5) < c - v ? c - 1 : c; } else { // see former branch result_type f(floor(v)); return T(0.5) < v - f ? f + 1 : f; } } template <class T, class Policy> BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T> round(const T& v, const Policy&, const std::true_type&) { return v; } } // namespace detail template <class T, class Policy> BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T> round(const T& v, const Policy& pol) { return detail::round(v, pol, std::integral_constant<bool, detail::is_integer_for_rounding<T>::value>()); } template <class T> BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T> round(const T& v) { return round(v, policies::policy<>()); } // // The following functions will not compile unless T has an // implicit conversion to the integer types. For user-defined // number types this will likely not be the case. In that case // these functions should either be specialized for the UDT in // question, or else overloads should be placed in the same // namespace as the UDT: these will then be found via argument // dependent lookup. See our concept archetypes for examples. // // Non-standard numeric limits syntax "(std::numeric_limits<int>::max)()" // is to avoid macro substiution from MSVC // https://stackoverflow.com/questions/27442885/syntax-error-with-stdnumeric-limitsmax // template <class T, class Policy> inline int iround(const T& v, const Policy& pol) { BOOST_MATH_STD_USING using result_type = tools::promote_args_t<T>; result_type r = boost::math::round(v, pol); #if defined(BOOST_MATH_HAS_CONSTEXPR_LDEXP) && !defined(BOOST_MATH_HAS_GPU_SUPPORT) if constexpr (std::is_arithmetic_v<result_type> #ifdef BOOST_MATH_FLOAT128_TYPE && !std::is_same_v<BOOST_MATH_FLOAT128_TYPE, result_type> #endif ) { constexpr result_type max_val = boost::math::ccmath::ldexp(static_cast<result_type>(1), std::numeric_limits<int>::digits); if (r >= max_val || r < -max_val) { return static_cast<int>(boost::math::policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", nullptr, v, static_cast<int>(0), pol)); } } else { static const result_type max_val = ldexp(static_cast<result_type>(1), std::numeric_limits<int>::digits); if (r >= max_val || r < -max_val) { return static_cast<int>(boost::math::policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", nullptr, v, static_cast<int>(0), pol)); } } #else BOOST_MATH_STATIC_LOCAL_VARIABLE const result_type max_val = ldexp(static_cast<result_type>(1), std::numeric_limits<int>::digits); if (r >= max_val || r < -max_val) { return static_cast<int>(boost::math::policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", nullptr, v, static_cast<int>(0), pol)); } #endif return static_cast<int>(r); } template <class T> BOOST_MATH_GPU_ENABLED inline int iround(const T& v) { return iround(v, policies::policy<>()); } template <class T, class Policy> BOOST_MATH_GPU_ENABLED inline long lround(const T& v, const Policy& pol) { BOOST_MATH_STD_USING using result_type = tools::promote_args_t<T>; result_type r = boost::math::round(v, pol); #if defined(BOOST_MATH_HAS_CONSTEXPR_LDEXP) && !defined(BOOST_MATH_HAS_GPU_SUPPORT) if constexpr (std::is_arithmetic_v<result_type> #ifdef BOOST_MATH_FLOAT128_TYPE && !std::is_same_v<BOOST_MATH_FLOAT128_TYPE, result_type> #endif ) { constexpr result_type max_val = boost::math::ccmath::ldexp(static_cast<result_type>(1), std::numeric_limits<long>::digits); if (r >= max_val || r < -max_val) { return static_cast<long>(boost::math::policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", nullptr, v, static_cast<long>(0), pol)); } } else { static const result_type max_val = ldexp(static_cast<result_type>(1), std::numeric_limits<long>::digits); if (r >= max_val || r < -max_val) { return static_cast<long>(boost::math::policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", nullptr, v, static_cast<long>(0), pol)); } } #else BOOST_MATH_STATIC_LOCAL_VARIABLE const result_type max_val = ldexp(static_cast<result_type>(1), std::numeric_limits<long>::digits); if (r >= max_val || r < -max_val) { return static_cast<long>(boost::math::policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", nullptr, v, static_cast<long>(0), pol)); } #endif return static_cast<long>(r); } template <class T> BOOST_MATH_GPU_ENABLED inline long lround(const T& v) { return lround(v, policies::policy<>()); } template <class T, class Policy> BOOST_MATH_GPU_ENABLED inline long long llround(const T& v, const Policy& pol) { BOOST_MATH_STD_USING using result_type = boost::math::tools::promote_args_t<T>; result_type r = boost::math::round(v, pol); #if defined(BOOST_MATH_HAS_CONSTEXPR_LDEXP) && !defined(BOOST_MATH_HAS_GPU_SUPPORT) if constexpr (std::is_arithmetic_v<result_type> #ifdef BOOST_MATH_FLOAT128_TYPE && !std::is_same_v<BOOST_MATH_FLOAT128_TYPE, result_type> #endif ) { constexpr result_type max_val = boost::math::ccmath::ldexp(static_cast<result_type>(1), std::numeric_limits<long long>::digits); if (r >= max_val || r < -max_val) { return static_cast<long long>(boost::math::policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", nullptr, v, static_cast<long long>(0), pol)); } } else { static const result_type max_val = ldexp(static_cast<result_type>(1), std::numeric_limits<long long>::digits); if (r >= max_val || r < -max_val) { return static_cast<long long>(boost::math::policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", nullptr, v, static_cast<long long>(0), pol)); } } #else BOOST_MATH_STATIC_LOCAL_VARIABLE const result_type max_val = ldexp(static_cast<result_type>(1), std::numeric_limits<long long>::digits); if (r >= max_val || r < -max_val) { return static_cast<long long>(boost::math::policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", nullptr, v, static_cast<long long>(0), pol)); } #endif return static_cast<long long>(r); } template <class T> BOOST_MATH_GPU_ENABLED inline long long llround(const T& v) { return llround(v, policies::policy<>()); } }} // namespaces #else // Specialized NVRTC overloads namespace boost { namespace math { template <typename T> BOOST_MATH_GPU_ENABLED T round(T x) { return ::round(x); } template <> BOOST_MATH_GPU_ENABLED float round(float x) { return ::roundf(x); } template <typename T, typename Policy> BOOST_MATH_GPU_ENABLED T round(T x, const Policy&) { return ::round(x); } template <typename Policy> BOOST_MATH_GPU_ENABLED float round(float x, const Policy&) { return ::roundf(x); } template <typename T> BOOST_MATH_GPU_ENABLED int iround(T x) { return static_cast<int>(::lround(x)); } template <> BOOST_MATH_GPU_ENABLED int iround(float x) { return static_cast<int>(::lroundf(x)); } template <typename T, typename Policy> BOOST_MATH_GPU_ENABLED int iround(T x, const Policy&) { return static_cast<int>(::lround(x)); } template <typename Policy> BOOST_MATH_GPU_ENABLED int iround(float x, const Policy&) { return static_cast<int>(::lroundf(x)); } template <typename T> BOOST_MATH_GPU_ENABLED long lround(T x) { return ::lround(x); } template <> BOOST_MATH_GPU_ENABLED long lround(float x) { return ::lroundf(x); } template <typename T, typename Policy> BOOST_MATH_GPU_ENABLED long lround(T x, const Policy&) { return ::lround(x); } template <typename Policy> BOOST_MATH_GPU_ENABLED long lround(float x, const Policy&) { return ::lroundf(x); } template <typename T> BOOST_MATH_GPU_ENABLED long long llround(T x) { return ::llround(x); } template <> BOOST_MATH_GPU_ENABLED long long llround(float x) { return ::llroundf(x); } template <typename T, typename Policy> BOOST_MATH_GPU_ENABLED long long llround(T x, const Policy&) { return ::llround(x); } template <typename Policy> BOOST_MATH_GPU_ENABLED long long llround(float x, const Policy&) { return ::llroundf(x); } } // Namespace math } // Namespace boost #endif // BOOST_MATH_HAS_NVRTC #endif // BOOST_MATH_ROUND_HPP