boost/function/function_template.hpp
#ifndef BOOST_FUNCTION_FUNCTION_TEMPLATE_HPP_INCLUDED
#define BOOST_FUNCTION_FUNCTION_TEMPLATE_HPP_INCLUDED
// Boost.Function library
// Copyright Douglas Gregor 2001-2006
// Copyright Emil Dotchevski 2007
// Use, modification and distribution is subject to the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
#include <boost/function/function_base.hpp>
#include <boost/core/no_exceptions_support.hpp>
#include <boost/mem_fn.hpp>
#include <boost/throw_exception.hpp>
#include <boost/config.hpp>
#include <algorithm>
#include <cassert>
#include <type_traits>
#if defined(BOOST_MSVC)
# pragma warning( push )
# pragma warning( disable : 4127 ) // "conditional expression is constant"
#endif
namespace boost {
namespace detail {
namespace function {
template<
typename FunctionPtr,
typename R,
typename... T
>
struct function_invoker
{
static R invoke(function_buffer& function_ptr,
T... a)
{
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.members.func_ptr);
return f(static_cast<T&&>(a)...);
}
};
template<
typename FunctionPtr,
typename R,
typename... T
>
struct void_function_invoker
{
static void
invoke(function_buffer& function_ptr,
T... a)
{
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.members.func_ptr);
f(static_cast<T&&>(a)...);
}
};
template<
typename FunctionObj,
typename R,
typename... T
>
struct function_obj_invoker
{
static R invoke(function_buffer& function_obj_ptr,
T... a)
{
FunctionObj* f;
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
return (*f)(static_cast<T&&>(a)...);
}
};
template<
typename FunctionObj,
typename R,
typename... T
>
struct void_function_obj_invoker
{
static void
invoke(function_buffer& function_obj_ptr,
T... a)
{
FunctionObj* f;
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
(*f)(static_cast<T&&>(a)...);
}
};
template<
typename FunctionObj,
typename R,
typename... T
>
struct function_ref_invoker
{
static R invoke(function_buffer& function_obj_ptr,
T... a)
{
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
return (*f)(static_cast<T&&>(a)...);
}
};
template<
typename FunctionObj,
typename R,
typename... T
>
struct void_function_ref_invoker
{
static void
invoke(function_buffer& function_obj_ptr,
T... a)
{
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.members.obj_ptr);
(*f)(static_cast<T&&>(a)...);
}
};
/* Handle invocation of member pointers. */
template<
typename MemberPtr,
typename R,
typename... T
>
struct member_invoker
{
static R invoke(function_buffer& function_obj_ptr,
T... a)
{
MemberPtr* f =
reinterpret_cast<MemberPtr*>(function_obj_ptr.data);
return boost::mem_fn(*f)(static_cast<T&&>(a)...);
}
};
template<
typename MemberPtr,
typename R,
typename... T
>
struct void_member_invoker
{
static void
invoke(function_buffer& function_obj_ptr,
T... a)
{
MemberPtr* f =
reinterpret_cast<MemberPtr*>(function_obj_ptr.data);
boost::mem_fn(*f)(static_cast<T&&>(a)...);
}
};
template<
typename FunctionPtr,
typename R,
typename... T
>
struct get_function_invoker
{
typedef typename std::conditional<std::is_void<R>::value,
void_function_invoker<
FunctionPtr,
R,
T...
>,
function_invoker<
FunctionPtr,
R,
T...
>
>::type type;
};
template<
typename FunctionObj,
typename R,
typename... T
>
struct get_function_obj_invoker
{
typedef typename std::conditional<std::is_void<R>::value,
void_function_obj_invoker<
FunctionObj,
R,
T...
>,
function_obj_invoker<
FunctionObj,
R,
T...
>
>::type type;
};
template<
typename FunctionObj,
typename R,
typename... T
>
struct get_function_ref_invoker
{
typedef typename std::conditional<std::is_void<R>::value,
void_function_ref_invoker<
FunctionObj,
R,
T...
>,
function_ref_invoker<
FunctionObj,
R,
T...
>
>::type type;
};
/* Retrieve the appropriate invoker for a member pointer. */
template<
typename MemberPtr,
typename R,
typename... T
>
struct get_member_invoker
{
typedef typename std::conditional<std::is_void<R>::value,
void_member_invoker<
MemberPtr,
R,
T...
>,
member_invoker<
MemberPtr,
R,
T...
>
>::type type;
};
/* Given the tag returned by get_function_tag, retrieve the
actual invoker that will be used for the given function
object.
Each specialization contains an "apply_" nested class template
that accepts the function object, return type, function
argument types, and allocator. The resulting "apply_" class
contains two typedefs, "invoker_type" and "manager_type",
which correspond to the invoker and manager types. */
template<typename Tag>
struct get_invoker { };
/* Retrieve the invoker for a function pointer. */
template<>
struct get_invoker<function_ptr_tag>
{
template<typename FunctionPtr,
typename R, typename... T>
struct apply_
{
typedef typename get_function_invoker<
FunctionPtr,
R,
T...
>::type
invoker_type;
typedef functor_manager<FunctionPtr> manager_type;
};
template<typename FunctionPtr, typename Allocator,
typename R, typename... T>
struct apply_a
{
typedef typename get_function_invoker<
FunctionPtr,
R,
T...
>::type
invoker_type;
typedef functor_manager<FunctionPtr> manager_type;
};
};
/* Retrieve the invoker for a member pointer. */
template<>
struct get_invoker<member_ptr_tag>
{
template<typename MemberPtr,
typename R, typename... T>
struct apply_
{
typedef typename get_member_invoker<
MemberPtr,
R,
T...
>::type
invoker_type;
typedef functor_manager<MemberPtr> manager_type;
};
template<typename MemberPtr, typename Allocator,
typename R, typename... T>
struct apply_a
{
typedef typename get_member_invoker<
MemberPtr,
R,
T...
>::type
invoker_type;
typedef functor_manager<MemberPtr> manager_type;
};
};
/* Retrieve the invoker for a function object. */
template<>
struct get_invoker<function_obj_tag>
{
template<typename FunctionObj,
typename R, typename... T>
struct apply_
{
typedef typename get_function_obj_invoker<
FunctionObj,
R,
T...
>::type
invoker_type;
typedef functor_manager<FunctionObj> manager_type;
};
template<typename FunctionObj, typename Allocator,
typename R, typename... T>
struct apply_a
{
typedef typename get_function_obj_invoker<
FunctionObj,
R,
T...
>::type
invoker_type;
typedef functor_manager_a<FunctionObj, Allocator> manager_type;
};
};
/* Retrieve the invoker for a reference to a function object. */
template<>
struct get_invoker<function_obj_ref_tag>
{
template<typename RefWrapper,
typename R, typename... T>
struct apply_
{
typedef typename get_function_ref_invoker<
typename RefWrapper::type,
R,
T...
>::type
invoker_type;
typedef reference_manager<typename RefWrapper::type> manager_type;
};
template<typename RefWrapper, typename Allocator,
typename R, typename... T>
struct apply_a
{
typedef typename get_function_ref_invoker<
typename RefWrapper::type,
R,
T...
>::type
invoker_type;
typedef reference_manager<typename RefWrapper::type> manager_type;
};
};
/**
* vtable for a specific boost::function instance. This
* structure must be an aggregate so that we can use static
* initialization in boost::function's assign_to and assign_to_a
* members. It therefore cannot have any constructors,
* destructors, base classes, etc.
*/
template<typename R, typename... T>
struct basic_vtable
{
typedef R result_type;
typedef result_type (*invoker_type)(function_buffer&
,
T...);
template<typename F>
bool assign_to(F f, function_buffer& functor) const
{
typedef typename get_function_tag<F>::type tag;
return assign_to(std::move(f), functor, tag());
}
template<typename F,typename Allocator>
bool assign_to_a(F f, function_buffer& functor, Allocator a) const
{
typedef typename get_function_tag<F>::type tag;
return assign_to_a(std::move(f), functor, a, tag());
}
void clear(function_buffer& functor) const
{
#if defined(BOOST_GCC) && (__GNUC__ >= 11)
# pragma GCC diagnostic push
// False positive in GCC 11/12 for empty function objects
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
if (base.manager)
base.manager(functor, functor, destroy_functor_tag);
#if defined(BOOST_GCC) && (__GNUC__ >= 11)
# pragma GCC diagnostic pop
#endif
}
private:
// Function pointers
template<typename FunctionPtr>
bool
assign_to(FunctionPtr f, function_buffer& functor, function_ptr_tag) const
{
this->clear(functor);
if (f) {
functor.members.func_ptr = reinterpret_cast<void (*)()>(f);
return true;
} else {
return false;
}
}
template<typename FunctionPtr,typename Allocator>
bool
assign_to_a(FunctionPtr f, function_buffer& functor, Allocator, function_ptr_tag) const
{
return assign_to(std::move(f),functor,function_ptr_tag());
}
// Member pointers
template<typename MemberPtr>
bool assign_to(MemberPtr f, function_buffer& functor, member_ptr_tag) const
{
// DPG TBD: Add explicit support for member function
// objects, so we invoke through mem_fn() but we retain the
// right target_type() values.
if (f) {
this->assign_to(boost::mem_fn(f), functor);
return true;
} else {
return false;
}
}
template<typename MemberPtr,typename Allocator>
bool assign_to_a(MemberPtr f, function_buffer& functor, Allocator a, member_ptr_tag) const
{
// DPG TBD: Add explicit support for member function
// objects, so we invoke through mem_fn() but we retain the
// right target_type() values.
if (f) {
this->assign_to_a(boost::mem_fn(f), functor, a);
return true;
} else {
return false;
}
}
// Function objects
// Assign to a function object using the small object optimization
template<typename FunctionObj>
void
assign_functor(FunctionObj f, function_buffer& functor, std::true_type) const
{
new (reinterpret_cast<void*>(functor.data)) FunctionObj(std::move(f));
}
template<typename FunctionObj,typename Allocator>
void
assign_functor_a(FunctionObj f, function_buffer& functor, Allocator, std::true_type) const
{
assign_functor(std::move(f),functor,std::true_type());
}
// Assign to a function object allocated on the heap.
template<typename FunctionObj>
void
assign_functor(FunctionObj f, function_buffer& functor, std::false_type) const
{
functor.members.obj_ptr = new FunctionObj(std::move(f));
}
template<typename FunctionObj,typename Allocator>
void
assign_functor_a(FunctionObj f, function_buffer& functor, Allocator a, std::false_type) const
{
typedef functor_wrapper<FunctionObj,Allocator> functor_wrapper_type;
using wrapper_allocator_type = typename std::allocator_traits<Allocator>::template rebind_alloc<functor_wrapper_type>;
using wrapper_allocator_pointer_type = typename std::allocator_traits<wrapper_allocator_type>::pointer;
wrapper_allocator_type wrapper_allocator(a);
wrapper_allocator_pointer_type copy = wrapper_allocator.allocate(1);
std::allocator_traits<wrapper_allocator_type>::construct(wrapper_allocator, copy, functor_wrapper_type(f,a));
functor_wrapper_type* new_f = static_cast<functor_wrapper_type*>(copy);
functor.members.obj_ptr = new_f;
}
template<typename FunctionObj>
bool
assign_to(FunctionObj f, function_buffer& functor, function_obj_tag) const
{
if (!boost::detail::function::has_empty_target(boost::addressof(f))) {
assign_functor(std::move(f), functor,
std::integral_constant<bool, (function_allows_small_object_optimization<FunctionObj>::value)>());
return true;
} else {
return false;
}
}
template<typename FunctionObj,typename Allocator>
bool
assign_to_a(FunctionObj f, function_buffer& functor, Allocator a, function_obj_tag) const
{
if (!boost::detail::function::has_empty_target(boost::addressof(f))) {
assign_functor_a(std::move(f), functor, a,
std::integral_constant<bool, (function_allows_small_object_optimization<FunctionObj>::value)>());
return true;
} else {
return false;
}
}
// Reference to a function object
template<typename FunctionObj>
bool
assign_to(const reference_wrapper<FunctionObj>& f,
function_buffer& functor, function_obj_ref_tag) const
{
functor.members.obj_ref.obj_ptr = (void *)(f.get_pointer());
functor.members.obj_ref.is_const_qualified = std::is_const<FunctionObj>::value;
functor.members.obj_ref.is_volatile_qualified = std::is_volatile<FunctionObj>::value;
return true;
}
template<typename FunctionObj,typename Allocator>
bool
assign_to_a(const reference_wrapper<FunctionObj>& f,
function_buffer& functor, Allocator, function_obj_ref_tag) const
{
return assign_to(f,functor,function_obj_ref_tag());
}
public:
vtable_base base;
invoker_type invoker;
};
template <typename... T>
struct variadic_function_base
{};
template <typename T1>
struct variadic_function_base<T1>
{
typedef T1 argument_type;
typedef T1 arg1_type;
};
template <typename T1, typename T2>
struct variadic_function_base<T1, T2>
{
typedef T1 first_argument_type;
typedef T2 second_argument_type;
typedef T1 arg1_type;
typedef T2 arg2_type;
};
template <typename T1, typename T2, typename T3>
struct variadic_function_base<T1, T2, T3>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
};
template <typename T1, typename T2, typename T3, typename T4>
struct variadic_function_base<T1, T2, T3, T4>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
typedef T4 arg4_type;
};
template <typename T1, typename T2, typename T3, typename T4, typename T5>
struct variadic_function_base<T1, T2, T3, T4, T5>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
typedef T4 arg4_type;
typedef T5 arg5_type;
};
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
struct variadic_function_base<T1, T2, T3, T4, T5, T6>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
typedef T4 arg4_type;
typedef T5 arg5_type;
typedef T6 arg6_type;
};
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
struct variadic_function_base<T1, T2, T3, T4, T5, T6, T7>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
typedef T4 arg4_type;
typedef T5 arg5_type;
typedef T6 arg6_type;
typedef T7 arg7_type;
};
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
struct variadic_function_base<T1, T2, T3, T4, T5, T6, T7, T8>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
typedef T4 arg4_type;
typedef T5 arg5_type;
typedef T6 arg6_type;
typedef T7 arg7_type;
typedef T8 arg8_type;
};
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
struct variadic_function_base<T1, T2, T3, T4, T5, T6, T7, T8, T9>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
typedef T4 arg4_type;
typedef T5 arg5_type;
typedef T6 arg6_type;
typedef T7 arg7_type;
typedef T8 arg8_type;
typedef T9 arg9_type;
};
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10>
struct variadic_function_base<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>
{
typedef T1 arg1_type;
typedef T2 arg2_type;
typedef T3 arg3_type;
typedef T4 arg4_type;
typedef T5 arg5_type;
typedef T6 arg6_type;
typedef T7 arg7_type;
typedef T8 arg8_type;
typedef T9 arg9_type;
typedef T10 arg10_type;
};
#if defined( BOOST_LIBSTDCXX_VERSION ) && BOOST_LIBSTDCXX_VERSION < 50000
template<class T> struct is_trivially_copyable: std::integral_constant<bool,
__has_trivial_copy(T) && __has_trivial_assign(T) && __has_trivial_destructor(T)> {};
#else
using std::is_trivially_copyable;
#endif
} // end namespace function
} // end namespace detail
template<
typename R,
typename... T
>
class function_n : public function_base
, public detail::function::variadic_function_base<T...>
{
public:
typedef R result_type;
private:
typedef boost::detail::function::basic_vtable<
R, T...>
vtable_type;
vtable_type* get_vtable() const {
return reinterpret_cast<vtable_type*>(
reinterpret_cast<std::size_t>(vtable) & ~static_cast<std::size_t>(0x01));
}
struct clear_type {};
public:
// add signature for boost::lambda
template<typename Args>
struct sig
{
typedef result_type type;
};
BOOST_STATIC_CONSTANT(int, arity = sizeof...(T));
typedef function_n self_type;
BOOST_DEFAULTED_FUNCTION(function_n(), : function_base() {})
// MSVC chokes if the following two constructors are collapsed into
// one with a default parameter.
template<typename Functor>
function_n(Functor f
,typename std::enable_if<
!std::is_integral<Functor>::value,
int>::type = 0
) :
function_base()
{
this->assign_to(std::move(f));
}
template<typename Functor,typename Allocator>
function_n(Functor f, Allocator a
,typename std::enable_if<
!std::is_integral<Functor>::value,
int>::type = 0
) :
function_base()
{
this->assign_to_a(std::move(f),a);
}
function_n(clear_type*) : function_base() { }
function_n(const function_n& f) : function_base()
{
this->assign_to_own(f);
}
function_n(function_n&& f) : function_base()
{
this->move_assign(f);
}
~function_n() { clear(); }
result_type operator()(T... a) const
{
if (this->empty())
boost::throw_exception(bad_function_call());
return get_vtable()->invoker
(this->functor, static_cast<T&&>(a)...);
}
// The distinction between when to use function_n and
// when to use self_type is obnoxious. MSVC cannot handle self_type as
// the return type of these assignment operators, but Borland C++ cannot
// handle function_n as the type of the temporary to
// construct.
template<typename Functor>
typename std::enable_if<
!std::is_integral<Functor>::value,
function_n&>::type
operator=(Functor f)
{
this->clear();
BOOST_TRY {
this->assign_to(f);
} BOOST_CATCH (...) {
vtable = 0;
BOOST_RETHROW;
}
BOOST_CATCH_END
return *this;
}
template<typename Functor,typename Allocator>
void assign(Functor f, Allocator a)
{
this->clear();
BOOST_TRY{
this->assign_to_a(f,a);
} BOOST_CATCH (...) {
vtable = 0;
BOOST_RETHROW;
}
BOOST_CATCH_END
}
function_n& operator=(clear_type*)
{
this->clear();
return *this;
}
// Assignment from another function_n
function_n& operator=(const function_n& f)
{
if (&f == this)
return *this;
this->clear();
BOOST_TRY {
this->assign_to_own(f);
} BOOST_CATCH (...) {
vtable = 0;
BOOST_RETHROW;
}
BOOST_CATCH_END
return *this;
}
// Move assignment from another function_n
function_n& operator=(function_n&& f)
{
if (&f == this)
return *this;
this->clear();
BOOST_TRY {
this->move_assign(f);
} BOOST_CATCH (...) {
vtable = 0;
BOOST_RETHROW;
}
BOOST_CATCH_END
return *this;
}
void swap(function_n& other)
{
if (&other == this)
return;
function_n tmp;
tmp.move_assign(*this);
this->move_assign(other);
other.move_assign(tmp);
}
// Clear out a target, if there is one
void clear()
{
if (vtable) {
if (!this->has_trivial_copy_and_destroy())
get_vtable()->clear(this->functor);
vtable = 0;
}
}
explicit operator bool () const { return !this->empty(); }
private:
void assign_to_own(const function_n& f)
{
if (!f.empty()) {
this->vtable = f.vtable;
if (this->has_trivial_copy_and_destroy()) {
// Don't operate on storage directly since union type doesn't relax
// strict aliasing rules, despite of having member char type.
# if defined(BOOST_GCC) && (BOOST_GCC >= 40700)
# pragma GCC diagnostic push
// This warning is technically correct, but we don't want to pay the price for initializing
// just to silence a warning: https://github.com/boostorg/function/issues/27
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
# if (BOOST_GCC >= 110000)
// GCC 11.3, 12 emit a different warning: https://github.com/boostorg/function/issues/42
# pragma GCC diagnostic ignored "-Wuninitialized"
# endif
# endif
std::memcpy(this->functor.data, f.functor.data, sizeof(boost::detail::function::function_buffer));
# if defined(BOOST_GCC) && (BOOST_GCC >= 40700)
# pragma GCC diagnostic pop
# endif
} else
get_vtable()->base.manager(f.functor, this->functor,
boost::detail::function::clone_functor_tag);
}
}
template<typename Functor>
void assign_to(Functor f)
{
using boost::detail::function::vtable_base;
typedef typename boost::detail::function::get_function_tag<Functor>::type tag;
typedef boost::detail::function::get_invoker<tag> get_invoker;
typedef typename get_invoker::
template apply_<Functor, R,
T...>
handler_type;
typedef typename handler_type::invoker_type invoker_type;
typedef typename handler_type::manager_type manager_type;
// Note: it is extremely important that this initialization use
// static initialization. Otherwise, we will have a race
// condition here in multi-threaded code. See
// http://thread.gmane.org/gmane.comp.lib.boost.devel/164902/.
static const vtable_type stored_vtable =
{ { &manager_type::manage }, &invoker_type::invoke };
if (stored_vtable.assign_to(std::move(f), functor)) {
std::size_t value = reinterpret_cast<std::size_t>(&stored_vtable.base);
// coverity[pointless_expression]: suppress coverity warnings on apparant if(const).
if (boost::detail::function::is_trivially_copyable<Functor>::value &&
boost::detail::function::function_allows_small_object_optimization<Functor>::value)
value |= static_cast<std::size_t>(0x01);
vtable = reinterpret_cast<boost::detail::function::vtable_base *>(value);
} else
vtable = 0;
}
template<typename Functor,typename Allocator>
void assign_to_a(Functor f,Allocator a)
{
using boost::detail::function::vtable_base;
typedef typename boost::detail::function::get_function_tag<Functor>::type tag;
typedef boost::detail::function::get_invoker<tag> get_invoker;
typedef typename get_invoker::
template apply_a<Functor, Allocator, R,
T...>
handler_type;
typedef typename handler_type::invoker_type invoker_type;
typedef typename handler_type::manager_type manager_type;
// Note: it is extremely important that this initialization use
// static initialization. Otherwise, we will have a race
// condition here in multi-threaded code. See
// http://thread.gmane.org/gmane.comp.lib.boost.devel/164902/.
static const vtable_type stored_vtable =
{ { &manager_type::manage }, &invoker_type::invoke };
if (stored_vtable.assign_to_a(std::move(f), functor, a)) {
std::size_t value = reinterpret_cast<std::size_t>(&stored_vtable.base);
// coverity[pointless_expression]: suppress coverity warnings on apparant if(const).
if (boost::detail::function::is_trivially_copyable<Functor>::value &&
boost::detail::function::function_allows_small_object_optimization<Functor>::value)
value |= static_cast<std::size_t>(0x01);
vtable = reinterpret_cast<boost::detail::function::vtable_base *>(value);
} else
vtable = 0;
}
// Moves the value from the specified argument to *this. If the argument
// has its function object allocated on the heap, move_assign will pass
// its buffer to *this, and set the argument's buffer pointer to NULL.
void move_assign(function_n& f)
{
if (&f == this)
return;
BOOST_TRY {
if (!f.empty()) {
this->vtable = f.vtable;
if (this->has_trivial_copy_and_destroy()) {
// Don't operate on storage directly since union type doesn't relax
// strict aliasing rules, despite of having member char type.
# if defined(BOOST_GCC) && (BOOST_GCC >= 40700)
# pragma GCC diagnostic push
// This warning is technically correct, but we don't want to pay the price for initializing
// just to silence a warning: https://github.com/boostorg/function/issues/27
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
# if (BOOST_GCC >= 120000)
// GCC 12 emits a different warning: https://github.com/boostorg/function/issues/42
# pragma GCC diagnostic ignored "-Wuninitialized"
# endif
# endif
std::memcpy(this->functor.data, f.functor.data, sizeof(this->functor.data));
# if defined(BOOST_GCC) && (BOOST_GCC >= 40700)
# pragma GCC diagnostic pop
# endif
} else
#if defined(BOOST_GCC) && (__GNUC__ >= 11)
# pragma GCC diagnostic push
// False positive in GCC 11/12 for empty function objects (function_n_test.cpp:673)
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
get_vtable()->base.manager(f.functor, this->functor,
boost::detail::function::move_functor_tag);
#if defined(BOOST_GCC) && (__GNUC__ >= 11)
# pragma GCC diagnostic pop
#endif
f.vtable = 0;
} else {
clear();
}
} BOOST_CATCH (...) {
vtable = 0;
BOOST_RETHROW;
}
BOOST_CATCH_END
}
};
template<typename R, typename... T>
inline void swap(function_n<
R,
T...
>& f1,
function_n<
R,
T...
>& f2)
{
f1.swap(f2);
}
// Poison comparisons between boost::function objects of the same type.
template<typename R, typename... T>
void operator==(const function_n<
R,
T...>&,
const function_n<
R,
T...>&);
template<typename R, typename... T>
void operator!=(const function_n<
R,
T...>&,
const function_n<
R,
T...>& );
template<typename R,
typename... T>
class function<R (T...)>
: public function_n<R, T...>
{
typedef function_n<R, T...> base_type;
typedef function self_type;
struct clear_type {};
public:
BOOST_DEFAULTED_FUNCTION(function(), : base_type() {})
template<typename Functor>
function(Functor f
,typename std::enable_if<
!std::is_integral<Functor>::value,
int>::type = 0
) :
base_type(std::move(f))
{
}
template<typename Functor,typename Allocator>
function(Functor f, Allocator a
,typename std::enable_if<
!std::is_integral<Functor>::value,
int>::type = 0
) :
base_type(std::move(f),a)
{
}
function(clear_type*) : base_type() {}
function(const self_type& f) : base_type(static_cast<const base_type&>(f)){}
function(const base_type& f) : base_type(static_cast<const base_type&>(f)){}
// Move constructors
function(self_type&& f): base_type(static_cast<base_type&&>(f)){}
function(base_type&& f): base_type(static_cast<base_type&&>(f)){}
self_type& operator=(const self_type& f)
{
self_type(f).swap(*this);
return *this;
}
self_type& operator=(self_type&& f)
{
self_type(static_cast<self_type&&>(f)).swap(*this);
return *this;
}
template<typename Functor>
typename std::enable_if<
!std::is_integral<Functor>::value,
self_type&>::type
operator=(Functor f)
{
self_type(f).swap(*this);
return *this;
}
self_type& operator=(clear_type*)
{
this->clear();
return *this;
}
self_type& operator=(const base_type& f)
{
self_type(f).swap(*this);
return *this;
}
self_type& operator=(base_type&& f)
{
self_type(static_cast<base_type&&>(f)).swap(*this);
return *this;
}
};
} // end namespace boost
#if defined(BOOST_MSVC)
# pragma warning( pop )
#endif
// Resolve C++20 issue with fn == bind(...)
// https://github.com/boostorg/function/issues/45
namespace boost
{
namespace _bi
{
template<class R, class F, class L> class bind_t;
} // namespace _bi
template<class S, class R, class F, class L> bool operator==( function<S> const& f, _bi::bind_t<R, F, L> const& b )
{
return f.contains( b );
}
template<class S, class R, class F, class L> bool operator!=( function<S> const& f, _bi::bind_t<R, F, L> const& b )
{
return !f.contains( b );
}
} // namespace boost
#endif // #ifndef BOOST_FUNCTION_FUNCTION_TEMPLATE_HPP_INCLUDED