boost/heap/fibonacci_heap.hpp
// boost heap: fibonacci heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_FIBONACCI_HEAP_HPP
#define BOOST_HEAP_FIBONACCI_HEAP_HPP
#include <algorithm>
#include <utility>
#include <vector>
#include <boost/array.hpp>
#include <boost/assert.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/heap_node.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/tree_iterator.hpp>
#include <boost/type_traits/integral_constant.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
# pragma once
#endif
#ifndef BOOST_DOXYGEN_INVOKED
# ifdef BOOST_HEAP_SANITYCHECKS
# define BOOST_HEAP_ASSERT BOOST_ASSERT
# else
# define BOOST_HEAP_ASSERT( expression )
# endif
#endif
namespace boost { namespace heap {
namespace detail {
typedef parameter::parameters< boost::parameter::optional< tag::allocator >,
boost::parameter::optional< tag::compare >,
boost::parameter::optional< tag::stable >,
boost::parameter::optional< tag::constant_time_size >,
boost::parameter::optional< tag::stability_counter_type > >
fibonacci_heap_signature;
template < typename T, typename Parspec >
struct make_fibonacci_heap_base
{
static const bool constant_time_size
= parameter::binding< Parspec, tag::constant_time_size, boost::true_type >::type::value;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::type base_type;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::allocator_argument allocator_argument;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::compare_argument compare_argument;
typedef marked_heap_node< typename base_type::internal_type > node_type;
typedef typename boost::allocator_rebind< allocator_argument, node_type >::type allocator_type;
struct type : base_type, allocator_type
{
type( compare_argument const& arg ) :
base_type( arg )
{}
type( allocator_type const& arg ) :
allocator_type( arg )
{}
type( type const& rhs ) :
base_type( static_cast< base_type const& >( rhs ) ),
allocator_type( static_cast< allocator_type const& >( rhs ) )
{}
type& operator=( type const& rhs )
{
base_type::operator=( static_cast< base_type const& >( rhs ) );
allocator_type::operator=( static_cast< allocator_type const& >( rhs ) );
return *this;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
type( type&& rhs ) :
base_type( std::move( static_cast< base_type& >( rhs ) ) ),
allocator_type( std::move( static_cast< allocator_type& >( rhs ) ) )
{}
type& operator=( type&& rhs )
{
base_type::operator=( std::move( static_cast< base_type& >( rhs ) ) );
allocator_type::operator=( std::move( static_cast< allocator_type& >( rhs ) ) );
return *this;
}
#endif
};
};
} // namespace detail
/**
* \class fibonacci_heap
* \brief fibonacci heap
*
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
* - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template < class T, class... Options >
#else
template < typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_,
class A4 = boost::parameter::void_ >
#endif
class fibonacci_heap :
private detail::
make_fibonacci_heap_base< T, typename detail::fibonacci_heap_signature::bind< A0, A1, A2, A3, A4 >::type >::type
{
typedef typename detail::fibonacci_heap_signature::bind< A0, A1, A2, A3, A4 >::type bound_args;
typedef detail::make_fibonacci_heap_base< T, bound_args > base_maker;
typedef typename base_maker::type super_t;
typedef typename super_t::size_holder_type size_holder;
typedef typename super_t::internal_type internal_type;
typedef typename base_maker::allocator_argument allocator_argument;
template < typename Heap1, typename Heap2 >
friend struct heap_merge_emulate;
private:
#ifndef BOOST_DOXYGEN_INVOKED
struct implementation_defined : detail::extract_allocator_types< typename base_maker::allocator_argument >
{
typedef T value_type;
typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::size_type size_type;
typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::reference reference;
typedef typename base_maker::compare_argument value_compare;
typedef typename base_maker::allocator_type allocator_type;
typedef typename boost::allocator_pointer< allocator_type >::type node_pointer;
typedef typename boost::allocator_const_pointer< allocator_type >::type const_node_pointer;
typedef detail::heap_node_list node_list_type;
typedef typename node_list_type::iterator node_list_iterator;
typedef typename node_list_type::const_iterator node_list_const_iterator;
typedef typename base_maker::node_type node;
typedef detail::value_extractor< value_type, internal_type, super_t > value_extractor;
typedef typename super_t::internal_compare internal_compare;
typedef detail::node_handle< node_pointer, super_t, reference > handle_type;
typedef detail::recursive_tree_iterator< node,
node_list_const_iterator,
const value_type,
value_extractor,
detail::list_iterator_converter< node, node_list_type > >
iterator;
typedef iterator const_iterator;
typedef detail::tree_iterator< node,
const value_type,
allocator_type,
value_extractor,
detail::list_iterator_converter< node, node_list_type >,
true,
true,
value_compare >
ordered_iterator;
};
typedef typename implementation_defined::node node;
typedef typename implementation_defined::node_pointer node_pointer;
typedef typename implementation_defined::node_list_type node_list_type;
typedef typename implementation_defined::node_list_iterator node_list_iterator;
typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator;
typedef typename implementation_defined::internal_compare internal_compare;
#endif
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/// \copydoc boost::heap::priority_queue::iterator
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::ordered_iterator ordered_iterator;
typedef typename implementation_defined::handle_type handle_type;
static const bool constant_time_size = base_maker::constant_time_size;
static const bool has_ordered_iterators = true;
static const bool is_mergable = true;
static const bool is_stable = detail::extract_stable< bound_args >::value;
static const bool has_reserve = false;
/// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
explicit fibonacci_heap( value_compare const& cmp = value_compare() ) :
super_t( cmp ),
top_element( 0 )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(allocator_type const &)
explicit fibonacci_heap( allocator_type const& alloc ) :
super_t( alloc ),
top_element( 0 )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
fibonacci_heap( fibonacci_heap const& rhs ) :
super_t( rhs ),
top_element( 0 )
{
if ( rhs.empty() )
return;
clone_forest( rhs );
size_holder::set_size( rhs.size() );
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
fibonacci_heap( fibonacci_heap&& rhs ) :
super_t( std::move( rhs ) ),
top_element( rhs.top_element )
{
roots.splice( roots.begin(), rhs.roots );
rhs.top_element = NULL;
}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
fibonacci_heap& operator=( fibonacci_heap&& rhs )
{
clear();
super_t::operator=( std::move( rhs ) );
roots.splice( roots.begin(), rhs.roots );
top_element = rhs.top_element;
rhs.top_element = NULL;
return *this;
}
#endif
/// \copydoc boost::heap::priority_queue::operator=(priority_queue const &)
fibonacci_heap& operator=( fibonacci_heap const& rhs )
{
clear();
size_holder::set_size( rhs.size() );
static_cast< super_t& >( *this ) = rhs;
if ( rhs.empty() )
top_element = NULL;
else
clone_forest( rhs );
return *this;
}
~fibonacci_heap( void )
{
clear();
}
/// \copydoc boost::heap::priority_queue::empty
bool empty( void ) const
{
if ( constant_time_size )
return size() == 0;
else
return roots.empty();
}
/// \copydoc boost::heap::priority_queue::size
size_type size( void ) const
{
if ( constant_time_size )
return size_holder::get_size();
if ( empty() )
return 0;
else
return detail::count_list_nodes< node, node_list_type >( roots );
}
/// \copydoc boost::heap::priority_queue::max_size
size_type max_size( void ) const
{
const allocator_type& alloc = *this;
return boost::allocator_max_size( alloc );
}
/// \copydoc boost::heap::priority_queue::clear
void clear( void )
{
typedef detail::node_disposer< node, typename node_list_type::value_type, allocator_type > disposer;
roots.clear_and_dispose( disposer( *this ) );
size_holder::set_size( 0 );
top_element = NULL;
}
/// \copydoc boost::heap::priority_queue::get_allocator
allocator_type get_allocator( void ) const
{
return *this;
}
/// \copydoc boost::heap::priority_queue::swap
void swap( fibonacci_heap& rhs )
{
super_t::swap( rhs );
std::swap( top_element, rhs.top_element );
roots.swap( rhs.roots );
}
/// \copydoc boost::heap::priority_queue::top
value_type const& top( void ) const
{
BOOST_ASSERT( !empty() );
return super_t::get_value( top_element->value );
}
/**
* \b Effects: Adds a new element to the priority queue. Returns handle to element
*
* \b Complexity: Constant.
*
* \b Note: Does not invalidate iterators.
*
* */
handle_type push( value_type const& v )
{
size_holder::increment();
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node( super_t::make_node( v ) );
roots.push_front( *n );
if ( !top_element || super_t::operator()( top_element->value, n->value ) )
top_element = n;
return handle_type( n );
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES ) && !defined( BOOST_NO_CXX11_VARIADIC_TEMPLATES )
/**
* \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns
* handle to element.
*
* \b Complexity: Constant.
*
* \b Note: Does not invalidate iterators.
*
* */
template < class... Args >
handle_type emplace( Args&&... args )
{
size_holder::increment();
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node( super_t::make_node( std::forward< Args >( args )... ) );
roots.push_front( *n );
if ( !top_element || super_t::operator()( top_element->value, n->value ) )
top_element = n;
return handle_type( n );
}
#endif
/**
* \b Effects: Removes the top element from the priority queue.
*
* \b Complexity: Logarithmic (amortized). Linear (worst case).
*
* */
void pop( void )
{
BOOST_ASSERT( !empty() );
node_pointer element = top_element;
roots.erase( node_list_type::s_iterator_to( *element ) );
finish_erase_or_pop( element );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic if current value < v, Constant otherwise.
*
* */
void update( handle_type handle, const_reference v )
{
if ( super_t::operator()( super_t::get_value( handle.node_->value ), v ) )
increase( handle, v );
else
decrease( handle, v );
}
/** \copydoc boost::heap::fibonacci_heap::update(handle_type, const_reference)
*
* \b Rationale: The lazy update function is a modification of the traditional update, that just invalidates
* the iterator to the object referred to by the handle.
* */
void update_lazy( handle_type handle, const_reference v )
{
handle.node_->value = super_t::make_node( v );
update_lazy( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void update( handle_type handle )
{
update_lazy( handle );
consolidate();
}
/** \copydoc boost::heap::fibonacci_heap::update (handle_type handle)
*
* \b Rationale: The lazy update function is a modification of the traditional update, that just invalidates
* the iterator to the object referred to by the handle.
* */
void update_lazy( handle_type handle )
{
node_pointer n = handle.node_;
node_pointer parent = n->get_parent();
if ( parent ) {
n->parent = NULL;
roots.splice( roots.begin(), parent->children, node_list_type::s_iterator_to( *n ) );
}
add_children_to_root( n );
if ( super_t::operator()( top_element->value, n->value ) )
top_element = n;
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Constant.
*
* \b Note: The new value is expected to be greater than the current one
* */
void increase( handle_type handle, const_reference v )
{
handle.node_->value = super_t::make_node( v );
increase( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Constant.
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void increase( handle_type handle )
{
node_pointer n = handle.node_;
if ( n->parent ) {
if ( super_t::operator()( n->get_parent()->value, n->value ) ) {
node_pointer parent = n->get_parent();
cut( n );
cascading_cut( parent );
}
}
if ( super_t::operator()( top_element->value, n->value ) ) {
top_element = n;
return;
}
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one
* */
void decrease( handle_type handle, const_reference v )
{
handle.node_->value = super_t::make_node( v );
decrease( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has
* been updated, the behavior of the data structure is undefined!
* */
void decrease( handle_type handle )
{
update( handle );
}
/**
* \b Effects: Removes the element handled by \c handle from the priority_queue.
*
* \b Complexity: Logarithmic.
* */
void erase( handle_type const& handle )
{
node_pointer element = handle.node_;
node_pointer parent = element->get_parent();
if ( parent )
parent->children.erase( node_list_type::s_iterator_to( *element ) );
else
roots.erase( node_list_type::s_iterator_to( *element ) );
finish_erase_or_pop( element );
}
/// \copydoc boost::heap::priority_queue::begin
iterator begin( void ) const
{
return iterator( roots.begin() );
}
/// \copydoc boost::heap::priority_queue::end
iterator end( void ) const
{
return iterator( roots.end() );
}
/**
* \b Effects: Returns an ordered iterator to the first element contained in the priority queue.
*
* \b Note: Ordered iterators traverse the priority queue in heap order.
* */
ordered_iterator ordered_begin( void ) const
{
return ordered_iterator( roots.begin(), roots.end(), top_element, super_t::value_comp() );
}
/**
* \b Effects: Returns an ordered iterator to the end of the priority queue.
*
* \b Note: Ordered iterators traverse the priority queue in heap order.
* */
ordered_iterator ordered_end( void ) const
{
return ordered_iterator( NULL, super_t::value_comp() );
}
/**
* \b Effects: Merge with priority queue rhs.
*
* \b Complexity: Constant.
*
* */
void merge( fibonacci_heap& rhs )
{
size_holder::add( rhs.get_size() );
if ( !top_element || ( rhs.top_element && super_t::operator()( top_element->value, rhs.top_element->value ) ) )
top_element = rhs.top_element;
roots.splice( roots.end(), rhs.roots );
rhs.top_element = NULL;
rhs.set_size( 0 );
super_t::set_stability_count( ( std::max )( super_t::get_stability_count(), rhs.get_stability_count() ) );
rhs.set_stability_count( 0 );
}
/// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator
static handle_type s_handle_from_iterator( iterator const& it )
{
node* ptr = const_cast< node* >( it.get_node() );
return handle_type( ptr );
}
/// \copydoc boost::heap::priority_queue::value_comp
value_compare const& value_comp( void ) const
{
return super_t::value_comp();
}
/// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
template < typename HeapType >
bool operator<( HeapType const& rhs ) const
{
return detail::heap_compare( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
template < typename HeapType >
bool operator>( HeapType const& rhs ) const
{
return detail::heap_compare( rhs, *this );
}
/// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
template < typename HeapType >
bool operator>=( HeapType const& rhs ) const
{
return !operator<( rhs );
}
/// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
template < typename HeapType >
bool operator<=( HeapType const& rhs ) const
{
return !operator>( rhs );
}
/// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
template < typename HeapType >
bool operator==( HeapType const& rhs ) const
{
return detail::heap_equality( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
template < typename HeapType >
bool operator!=( HeapType const& rhs ) const
{
return !( *this == rhs );
}
private:
#if !defined( BOOST_DOXYGEN_INVOKED )
void clone_forest( fibonacci_heap const& rhs )
{
BOOST_HEAP_ASSERT( roots.empty() );
typedef typename node::template node_cloner< allocator_type > node_cloner;
roots.clone_from( rhs.roots, node_cloner( *this, NULL ), detail::nop_disposer() );
top_element
= detail::find_max_child< node_list_type, node, internal_compare >( roots, super_t::get_internal_cmp() );
}
void cut( node_pointer n )
{
node_pointer parent = n->get_parent();
roots.splice( roots.begin(), parent->children, node_list_type::s_iterator_to( *n ) );
n->parent = 0;
n->mark = false;
}
void cascading_cut( node_pointer n )
{
node_pointer parent = n->get_parent();
if ( parent ) {
if ( !parent->mark )
parent->mark = true;
else {
cut( n );
cascading_cut( parent );
}
}
}
void add_children_to_root( node_pointer n )
{
for ( node_list_iterator it = n->children.begin(); it != n->children.end(); ++it ) {
node_pointer child = static_cast< node_pointer >( &*it );
child->parent = 0;
}
roots.splice( roots.end(), n->children );
}
void consolidate( void )
{
if ( roots.empty() )
return;
static const size_type max_log2 = sizeof( size_type ) * 8;
boost::array< node_pointer, max_log2 > aux;
aux.assign( NULL );
node_list_iterator it = roots.begin();
top_element = static_cast< node_pointer >( &*it );
do {
node_pointer n = static_cast< node_pointer >( &*it );
++it;
size_type node_rank = n->child_count();
if ( aux[ node_rank ] == NULL )
aux[ node_rank ] = n;
else {
do {
node_pointer other = aux[ node_rank ];
if ( super_t::operator()( n->value, other->value ) )
std::swap( n, other );
if ( other->parent )
n->children.splice( n->children.end(),
other->parent->children,
node_list_type::s_iterator_to( *other ) );
else
n->children.splice( n->children.end(), roots, node_list_type::s_iterator_to( *other ) );
other->parent = n;
aux[ node_rank ] = NULL;
node_rank = n->child_count();
} while ( aux[ node_rank ] != NULL );
aux[ node_rank ] = n;
}
if ( !super_t::operator()( n->value, top_element->value ) )
top_element = n;
} while ( it != roots.end() );
}
void finish_erase_or_pop( node_pointer erased_node )
{
add_children_to_root( erased_node );
erased_node->~node();
allocator_type& alloc = *this;
alloc.deallocate( erased_node, 1 );
size_holder::decrement();
if ( !empty() )
consolidate();
else
top_element = NULL;
}
mutable node_pointer top_element;
node_list_type roots;
#endif
};
}} // namespace boost::heap
#undef BOOST_HEAP_ASSERT
#endif /* BOOST_HEAP_FIBONACCI_HEAP_HPP */