boost/interprocess/containers/detail/flat_tree.hpp
////////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2001 by Andrei Alexandrescu
// This code accompanies the book:
// Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design
// Patterns Applied". Copyright (c) 2001. Addison-Wesley.
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author or Addison-Welsey Longman make no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
///////////////////////////////////////////////////////////////////////////////
//
// Parts of this file come from AssocVector.h file from Loki library
//
////////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_FLAT_TREE_HPP
#define BOOST_INTERPROCESS_FLAT_TREE_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/move.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <algorithm>
#include <functional>
#include <utility>
namespace boost {
namespace interprocess {
namespace detail {
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
class flat_tree
{
typedef boost::interprocess::vector<Value, Alloc> vector_t;
typedef Alloc allocator_t;
public:
class value_compare
: private Compare
{
typedef Value first_argument_type;
typedef Value second_argument_type;
typedef bool return_type;
public:
value_compare(const Compare &pred)
: Compare(pred)
{}
bool operator()(const Value& lhs, const Value& rhs) const
{
KeyOfValue key_extract;
return Compare::operator()(key_extract(lhs), key_extract(rhs));
}
const Compare &get_comp() const
{ return *this; }
Compare &get_comp()
{ return *this; }
};
private:
struct Data
//Inherit from value_compare to do EBO
: public value_compare
{
public:
Data(const Compare &comp,
const vector_t &vect)
: value_compare(comp), m_vect(vect){}
Data(const value_compare &comp,
const vector_t &vect)
: value_compare(comp), m_vect(vect){}
Data(const Compare &comp,
const allocator_t &alloc)
: value_compare(comp), m_vect(alloc){}
public:
vector_t m_vect;
};
Data m_data;
public:
typedef typename vector_t::value_type value_type;
typedef typename vector_t::pointer pointer;
typedef typename vector_t::const_pointer const_pointer;
typedef typename vector_t::reference reference;
typedef typename vector_t::const_reference const_reference;
typedef Key key_type;
typedef Compare key_compare;
typedef typename vector_t::allocator_type allocator_type;
typedef allocator_type stored_allocator_type;
typedef typename allocator_type::size_type size_type;
typedef typename allocator_type::difference_type difference_type;
typedef typename vector_t::iterator iterator;
typedef typename vector_t::const_iterator const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// allocation/deallocation
flat_tree(const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_data(comp, a)
{ }
flat_tree(const flat_tree& x)
: m_data(x.m_data, x.m_data.m_vect)
{ }
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
flat_tree(detail::moved_object<flat_tree> x)
: m_data(detail::move_impl(x.get().m_data))
{ }
#else
flat_tree(flat_tree &&x)
: m_data(detail::move_impl(x.m_data))
{ }
#endif
~flat_tree()
{ }
flat_tree& operator=(const flat_tree& x)
{ m_data = x.m_data; return *this; }
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
flat_tree& operator=(detail::moved_object<flat_tree> mx)
{ m_data = detail::move_impl(mx.get().m_data); return *this; }
#else
flat_tree& operator=(flat_tree &&mx)
{ m_data = detail::move_impl(mx.m_data); return *this; }
#endif
public:
// accessors:
Compare key_comp() const
{ return this->m_data.get_comp(); }
allocator_type get_allocator() const
{ return this->m_data.m_vect.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return this->m_data.m_vect.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return this->m_data.m_vect.get_stored_allocator(); }
iterator begin()
{ return this->m_data.m_vect.begin(); }
const_iterator begin() const
{ return this->cbegin(); }
const_iterator cbegin() const
{ return this->m_data.m_vect.begin(); }
iterator end()
{ return this->m_data.m_vect.end(); }
const_iterator end() const
{ return this->cend(); }
const_iterator cend() const
{ return this->m_data.m_vect.end(); }
reverse_iterator rbegin()
{ return reverse_iterator(this->end()); }
const_reverse_iterator rbegin() const
{ return this->crbegin(); }
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(this->cend()); }
reverse_iterator rend()
{ return reverse_iterator(this->begin()); }
const_reverse_iterator rend() const
{ return this->crend(); }
const_reverse_iterator crend() const
{ return const_reverse_iterator(this->cbegin()); }
bool empty() const
{ return this->m_data.m_vect.empty(); }
size_type size() const
{ return this->m_data.m_vect.size(); }
size_type max_size() const
{ return this->m_data.m_vect.max_size(); }
void swap(flat_tree& other)
{
value_compare& mycomp = this->m_data;
value_compare& othercomp = other.m_data;
detail::do_swap(mycomp, othercomp);
vector_t & myvect = this->m_data.m_vect;
vector_t & othervect = other.m_data.m_vect;
myvect.swap(othervect);
}
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
void swap(detail::moved_object<flat_tree> other)
{ this->swap(other.get()); }
#else
void swap(flat_tree &&other)
{ this->swap(other); }
#endif
public:
// insert/erase
std::pair<iterator,bool> insert_unique(const value_type& val)
{
insert_commit_data data;
std::pair<iterator,bool> ret = priv_insert_unique_prepare(val, data);
if(ret.second){
ret.first = priv_insert_commit(data, val);
}
return ret;
}
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
std::pair<iterator,bool> insert_unique(detail::moved_object<value_type> mval)
{
value_type &val = mval.get();
#else
std::pair<iterator,bool> insert_unique(value_type && val)
{
#endif
insert_commit_data data;
std::pair<iterator,bool> ret = priv_insert_unique_prepare(val, data);
if(ret.second){
ret.first = priv_insert_commit(data, detail::move_impl(val));
}
return ret;
}
iterator insert_equal(const value_type& val)
{
iterator i = this->upper_bound(KeyOfValue()(val));
i = this->m_data.m_vect.insert(i, val);
return i;
}
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
iterator insert_equal(detail::moved_object<value_type> mval)
{
iterator i = this->upper_bound(KeyOfValue()(mval.get()));
i = this->m_data.m_vect.insert(i, mval);
return i;
}
#else
iterator insert_equal(value_type && mval)
{
iterator i = this->upper_bound(KeyOfValue()(mval));
i = this->m_data.m_vect.insert(i, detail::move_impl(mval));
return i;
}
#endif
iterator insert_unique(const_iterator pos, const value_type& val)
{
insert_commit_data data;
std::pair<iterator,bool> ret = priv_insert_unique_prepare(pos, val, data);
if(ret.second){
ret.first = priv_insert_commit(data, val);
}
return ret.first;
}
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
iterator insert_unique(const_iterator pos, detail::moved_object<value_type> mval)
{
insert_commit_data data;
std::pair<iterator,bool> ret = priv_insert_unique_prepare(pos, mval.get(), data);
if(ret.second){
ret.first = priv_insert_commit(data, mval);
}
return ret.first;
}
#else
iterator insert_unique(const_iterator pos, value_type&&mval)
{
insert_commit_data data;
std::pair<iterator,bool> ret = priv_insert_unique_prepare(pos, mval, data);
if(ret.second){
ret.first = priv_insert_commit(data, detail::move_impl(mval));
}
return ret.first;
}
#endif
iterator insert_equal(const_iterator pos, const value_type& val)
{
insert_commit_data data;
priv_insert_equal_prepare(pos, val, data);
return priv_insert_commit(data, val);
}
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
iterator insert_equal(const_iterator pos, detail::moved_object<value_type> mval)
{
insert_commit_data data;
priv_insert_equal_prepare(pos, mval.get(), data);
return priv_insert_commit(data, mval);
}
#else
iterator insert_equal(const_iterator pos, value_type && mval)
{
insert_commit_data data;
priv_insert_equal_prepare(pos, mval, data);
return priv_insert_commit(data, detail::move_impl(mval));
}
#endif
template <class InIt>
void insert_unique(InIt first, InIt last)
{
for ( ; first != last; ++first)
this->insert_unique(*first);
}
template <class InIt>
void insert_equal(InIt first, InIt last)
{
typedef typename
std::iterator_traits<InIt>::iterator_category ItCat;
priv_insert_equal(first, last, ItCat());
}
#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
template <class... Args>
iterator emplace_unique(Args&&... args)
{
value_type val(detail::forward_impl<Args>(args)...);
insert_commit_data data;
std::pair<iterator,bool> ret =
priv_insert_unique_prepare(val, data);
if(ret.second){
ret.first = priv_insert_commit(data, detail::move_impl<value_type>(val));
}
return ret.first;
}
template <class... Args>
iterator emplace_hint_unique(const_iterator hint, Args&&... args)
{
value_type val(detail::forward_impl<Args>(args)...);
insert_commit_data data;
std::pair<iterator,bool> ret = priv_insert_unique_prepare(hint, val, data);
if(ret.second){
ret.first = priv_insert_commit(data, detail::move_impl<value_type>(val));
}
return ret.first;
}
template <class... Args>
iterator emplace_equal(Args&&... args)
{
value_type val(detail::forward_impl<Args>(args)...);
iterator i = this->upper_bound(KeyOfValue()(val));
i = this->m_data.m_vect.insert(i, detail::move_impl<value_type>(val));
return i;
}
template <class... Args>
iterator emplace_hint_equal(const_iterator hint, Args&&... args)
{
value_type val(detail::forward_impl<Args>(args)...);
insert_commit_data data;
priv_insert_equal_prepare(hint, val, data);
return priv_insert_commit(data, detail::move_impl<value_type>(val));
}
#else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
iterator emplace_unique()
{
detail::value_init<value_type> vval;
value_type &val = vval.m_t;
insert_commit_data data;
std::pair<iterator,bool> ret =
priv_insert_unique_prepare(val, data);
if(ret.second){
ret.first = priv_insert_commit(data, detail::move_impl<value_type>(val));
}
return ret.first;
}
iterator emplace_hint_unique(const_iterator hint)
{
detail::value_init<value_type> vval;
value_type &val = vval.m_t;
insert_commit_data data;
std::pair<iterator,bool> ret = priv_insert_unique_prepare(hint, val, data);
if(ret.second){
ret.first = priv_insert_commit(data, detail::move_impl<value_type>(val));
}
return ret.first;
}
iterator emplace_equal()
{
detail::value_init<value_type> vval;
value_type &val = vval.m_t;
iterator i = this->upper_bound(KeyOfValue()(val));
i = this->m_data.m_vect.insert(i, detail::move_impl<value_type>(val));
return i;
}
iterator emplace_hint_equal(const_iterator hint)
{
detail::value_init<value_type> vval;
value_type &val = vval.m_t;
insert_commit_data data;
priv_insert_equal_prepare(hint, val, data);
return priv_insert_commit(data, detail::move_impl<value_type>(val));
}
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
insert_commit_data data; \
std::pair<iterator,bool> ret = priv_insert_unique_prepare(val, data); \
if(ret.second){ \
ret.first = priv_insert_commit(data, detail::move_impl<value_type>(val)); \
} \
return ret.first; \
} \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint_unique(const_iterator hint, \
BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
insert_commit_data data; \
std::pair<iterator,bool> ret = priv_insert_unique_prepare(hint, val, data); \
if(ret.second){ \
ret.first = priv_insert_commit(data, detail::move_impl<value_type>(val)); \
} \
return ret.first; \
} \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
iterator i = this->upper_bound(KeyOfValue()(val)); \
i = this->m_data.m_vect.insert(i, detail::move_impl<value_type>(val)); \
return i; \
} \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint_equal(const_iterator hint, \
BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
insert_commit_data data; \
priv_insert_equal_prepare(hint, val, data); \
return priv_insert_commit(data, detail::move_impl<value_type>(val)); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
iterator erase(const_iterator position)
{ return this->m_data.m_vect.erase(position); }
size_type erase(const key_type& k)
{
std::pair<iterator,iterator > itp = this->equal_range(k);
size_type ret = static_cast<size_type>(itp.second-itp.first);
if (ret){
this->m_data.m_vect.erase(itp.first, itp.second);
}
return ret;
}
iterator erase(const_iterator first, const_iterator last)
{ return this->m_data.m_vect.erase(first, last); }
void clear()
{ this->m_data.m_vect.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ this->m_data.m_vect.shrink_to_fit(); }
// set operations:
iterator find(const key_type& k)
{
const Compare &key_comp = this->m_data.get_comp();
iterator i = this->lower_bound(k);
if (i != this->end() && key_comp(k, KeyOfValue()(*i))){
i = this->end();
}
return i;
}
const_iterator find(const key_type& k) const
{
const Compare &key_comp = this->m_data.get_comp();
const_iterator i = this->lower_bound(k);
if (i != this->end() && key_comp(k, KeyOfValue()(*i))){
i = this->end();
}
return i;
}
size_type count(const key_type& k) const
{
std::pair<const_iterator, const_iterator> p = this->equal_range(k);
size_type n = p.second - p.first;
return n;
}
iterator lower_bound(const key_type& k)
{ return this->priv_lower_bound(this->begin(), this->end(), k); }
const_iterator lower_bound(const key_type& k) const
{ return this->priv_lower_bound(this->begin(), this->end(), k); }
iterator upper_bound(const key_type& k)
{ return this->priv_upper_bound(this->begin(), this->end(), k); }
const_iterator upper_bound(const key_type& k) const
{ return this->priv_upper_bound(this->begin(), this->end(), k); }
std::pair<iterator,iterator> equal_range(const key_type& k)
{ return this->priv_equal_range(this->begin(), this->end(), k); }
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
{ return this->priv_equal_range(this->begin(), this->end(), k); }
size_type capacity() const
{ return this->m_data.m_vect.capacity(); }
void reserve(size_type count)
{ this->m_data.m_vect.reserve(count); }
private:
struct insert_commit_data
{
const_iterator position;
};
// insert/erase
void priv_insert_equal_prepare
(const_iterator pos, const value_type& val, insert_commit_data &data)
{
// N1780
// To insert val at pos:
// if pos == end || val <= *pos
// if pos == begin || val >= *(pos-1)
// insert val before pos
// else
// insert val before upper_bound(val)
// else if pos+1 == end || val <= *(pos+1)
// insert val after pos
// else
// insert val before lower_bound(val)
const value_compare &value_comp = this->m_data;
if(pos == this->cend() || !value_comp(*pos, val)){
if (pos == this->cbegin() || !value_comp(val, pos[-1])){
data.position = pos;
}
else{
data.position =
this->priv_upper_bound(this->cbegin(), pos, KeyOfValue()(val));
}
}
//Works, but increases code complexity
//else if (++pos == this->end() || !value_comp(*pos, val)){
// return this->m_data.m_vect.insert(pos, val);
//}
else{
data.position =
this->priv_lower_bound(pos, this->cend(), KeyOfValue()(val));
}
}
std::pair<iterator,bool> priv_insert_unique_prepare
(const_iterator beg, const_iterator end, const value_type& val, insert_commit_data &commit_data)
{
const value_compare &value_comp = this->m_data;
commit_data.position = this->priv_lower_bound(beg, end, KeyOfValue()(val));
return std::pair<iterator,bool>
( *reinterpret_cast<iterator*>(&commit_data.position)
, commit_data.position == end || value_comp(val, *commit_data.position));
}
std::pair<iterator,bool> priv_insert_unique_prepare
(const value_type& val, insert_commit_data &commit_data)
{ return priv_insert_unique_prepare(this->begin(), this->end(), val, commit_data); }
std::pair<iterator,bool> priv_insert_unique_prepare
(const_iterator pos, const value_type& val, insert_commit_data &commit_data)
{
//N1780. Props to Howard Hinnant!
//To insert val at pos:
//if pos == end || val <= *pos
// if pos == begin || val >= *(pos-1)
// insert val before pos
// else
// insert val before upper_bound(val)
//else if pos+1 == end || val <= *(pos+1)
// insert val after pos
//else
// insert val before lower_bound(val)
const value_compare &value_comp = this->m_data;
if(pos == this->cend() || value_comp(val, *pos)){
if(pos != this->cbegin() && !value_comp(val, pos[-1])){
if(value_comp(pos[-1], val)){
commit_data.position = pos;
return std::pair<iterator,bool>(*reinterpret_cast<iterator*>(&pos), true);
}
else{
return std::pair<iterator,bool>(*reinterpret_cast<iterator*>(&pos), false);
}
}
return this->priv_insert_unique_prepare(this->cbegin(), pos, val, commit_data);
}
// Works, but increases code complexity
//Next check
//else if (value_comp(*pos, val) && !value_comp(pos[1], val)){
// if(value_comp(val, pos[1])){
// commit_data.position = pos+1;
// return std::pair<iterator,bool>(pos+1, true);
// }
// else{
// return std::pair<iterator,bool>(pos+1, false);
// }
//}
else{
//[... pos ... val ... ]
//The hint is before the insertion position, so insert it
//in the remaining range
return this->priv_insert_unique_prepare(pos, this->end(), val, commit_data);
}
}
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template<class Convertible>
iterator priv_insert_commit
(insert_commit_data &commit_data, const Convertible &convertible)
{ return this->m_data.m_vect.insert(commit_data.position, convertible); }
#else
template<class Convertible>
iterator priv_insert_commit
(insert_commit_data &commit_data, Convertible &&convertible)
{ return this->m_data.m_vect.insert(commit_data.position, detail::forward_impl<Convertible>(convertible)); }
#endif
template <class RanIt>
RanIt priv_lower_bound(RanIt first, RanIt last,
const key_type & key) const
{
const Compare &key_comp = this->m_data.get_comp();
KeyOfValue key_extract;
difference_type len = last - first, half;
RanIt middle;
while (len > 0) {
half = len >> 1;
middle = first;
middle += half;
if (key_comp(key_extract(*middle), key)) {
++middle;
first = middle;
len = len - half - 1;
}
else
len = half;
}
return first;
}
template <class RanIt>
RanIt priv_upper_bound(RanIt first, RanIt last,
const key_type & key) const
{
const Compare &key_comp = this->m_data.get_comp();
KeyOfValue key_extract;
difference_type len = last - first, half;
RanIt middle;
while (len > 0) {
half = len >> 1;
middle = first;
middle += half;
if (key_comp(key, key_extract(*middle))) {
len = half;
}
else{
first = ++middle;
len = len - half - 1;
}
}
return first;
}
template <class RanIt>
std::pair<RanIt, RanIt>
priv_equal_range(RanIt first, RanIt last, const key_type& key) const
{
const Compare &key_comp = this->m_data.get_comp();
KeyOfValue key_extract;
difference_type len = last - first, half;
RanIt middle, left, right;
while (len > 0) {
half = len >> 1;
middle = first;
middle += half;
if (key_comp(key_extract(*middle), key)){
first = middle;
++first;
len = len - half - 1;
}
else if (key_comp(key, key_extract(*middle))){
len = half;
}
else {
left = this->priv_lower_bound(first, middle, key);
first += len;
right = this->priv_upper_bound(++middle, first, key);
return std::pair<RanIt, RanIt>(left, right);
}
}
return std::pair<RanIt, RanIt>(first, first);
}
template <class FwdIt>
void priv_insert_equal(FwdIt first, FwdIt last, std::forward_iterator_tag)
{
size_type len = static_cast<size_type>(std::distance(first, last));
this->reserve(this->size()+len);
this->priv_insert_equal(first, last, std::input_iterator_tag());
}
template <class InIt>
void priv_insert_equal(InIt first, InIt last, std::input_iterator_tag)
{
for ( ; first != last; ++first)
this->insert_equal(*first);
}
/*
template <class FwdIt>
void priv_insert_unique(FwdIt first, FwdIt last, std::forward_iterator_tag)
{
size_type len = static_cast<size_type>(std::distance(first, last));
this->reserve(this->size()+len);
priv_insert_unique(first, last, std::input_iterator_tag());
}
template <class InIt>
void priv_insert_unique(InIt first, InIt last, std::input_iterator_tag)
{
for ( ; first != last; ++first)
this->insert_unique(*first);
}
*/
};
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
inline bool
operator==(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
{
return x.size() == y.size() &&
std::equal(x.begin(), x.end(), y.begin());
}
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
inline bool
operator<(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
{
return std::lexicographical_compare(x.begin(), x.end(),
y.begin(), y.end());
}
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
inline bool
operator!=(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
{ return !(x == y); }
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
inline bool
operator>(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
{ return y < x; }
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
inline bool
operator<=(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
{ return !(y < x); }
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
inline bool
operator>=(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
{ return !(x < y); }
template <class Key, class Value, class KeyOfValue,
class Compare, class Alloc>
inline void
swap(flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
{ x.swap(y); }
} //namespace detail {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class V, class KOV,
class C, class A>
struct has_trivial_destructor_after_move<detail::flat_tree<K, V, KOV, C, A> >
{
enum { value =
has_trivial_destructor<A>::value &&
has_trivial_destructor<C>::value };
};
} //namespace interprocess {
} //namespace boost {
#include <boost/interprocess/detail/config_end.hpp>
#endif // BOOST_INTERPROCESS_FLAT_TREE_HPP