boost/interprocess/containers/flat_map.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_FLAT_MAP_HPP
#define BOOST_INTERPROCESS_FLAT_MAP_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/interprocess_fwd.hpp>
#include <utility>
#include <functional>
#include <memory>
#include <stdexcept>
#include <boost/interprocess/containers/detail/flat_tree.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/move.hpp>
namespace boost { namespace interprocess {
/// @cond
// Forward declarations of operators == and <, needed for friend declarations.
template <class Key, class T, class Pred, class Alloc>
class flat_map;
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y);
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y);
/// @endcond
//! A flat_map is a kind of associative container that supports unique keys (contains at
//! most one of each key value) and provides for fast retrieval of values of another
//! type T based on the keys. The flat_map class supports random-access iterators.
//!
//! A flat_map satisfies all of the requirements of a container and of a reversible
//! container and of an associative container. A flat_map also provides
//! most operations described for unique keys. For a
//! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
//! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
//!
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
//!
//! Alloc is the allocator to allocate the value_types
//! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>).
//!
//! flat_map is similar to std::map but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_map invalidates
//! previous iterators and references
//!
//! Erasing an element of a flat_map invalidates iterators and references
//! pointing to elements that come after (their keys are bigger) the erased element.
template <class Key, class T, class Pred, class Alloc>
class flat_map
{
/// @cond
private:
//This is the tree that we should store if pair was movable
typedef detail::flat_tree<Key,
std::pair<Key, T>,
detail::select1st< std::pair<Key, T> >,
Pred,
Alloc> tree_t;
//#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
//This is the real tree stored here. It's based on a movable pair
typedef detail::flat_tree<Key,
detail::pair<Key, T>,
detail::select1st< detail::pair<Key, T> >,
Pred,
typename Alloc::template
rebind<detail::pair<Key, T> >::other> impl_tree_t;
/*
#else
typedef tree_t impl_tree_t;
#endif
*/
impl_tree_t m_flat_tree; // flat tree representing flat_map
typedef typename impl_tree_t::value_type impl_value_type;
typedef typename impl_tree_t::pointer impl_pointer;
typedef typename impl_tree_t::const_pointer impl_const_pointer;
typedef typename impl_tree_t::reference impl_reference;
typedef typename impl_tree_t::const_reference impl_const_reference;
typedef typename impl_tree_t::value_compare impl_value_compare;
typedef typename impl_tree_t::iterator impl_iterator;
typedef typename impl_tree_t::const_iterator impl_const_iterator;
typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
typedef typename impl_tree_t::allocator_type impl_allocator_type;
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
typedef detail::moved_object<impl_value_type> impl_moved_value_type;
#endif
//#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template<class D, class S>
static D &force(const S &s)
{ return *const_cast<D*>(reinterpret_cast<const D*>(&s)); }
template<class D, class S>
static D force_copy(S s)
{
value_type *vp = reinterpret_cast<value_type *>(&*s);
return D(vp);
}
/// @endcond
public:
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef typename tree_t::value_compare value_compare;
typedef T mapped_type;
typedef typename tree_t::key_compare key_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
//! <b>Effects</b>: Constructs an empty flat_map using the specified
//! comparison object and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit flat_map(const Pred& comp = Pred(), const allocator_type& a = allocator_type())
: m_flat_tree(comp, force<impl_allocator_type>(a)) {}
//! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_flat_tree(comp, force<impl_allocator_type>(a))
{ m_flat_tree.insert_unique(first, last); }
//! <b>Effects</b>: Copy constructs a flat_map.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_map(const flat_map<Key,T,Pred,Alloc>& x)
: m_flat_tree(x.m_flat_tree) {}
//! <b>Effects</b>: Move constructs a flat_map.
//! Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
flat_map(detail::moved_object<flat_map<Key,T,Pred,Alloc> > x)
: m_flat_tree(detail::move_impl(x.get().m_flat_tree)) {}
#else
flat_map(flat_map<Key,T,Pred,Alloc> && x)
: m_flat_tree(detail::move_impl(x.m_flat_tree)) {}
#endif
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_map<Key,T,Pred,Alloc>& operator=(const flat_map<Key, T, Pred, Alloc>& x)
{ m_flat_tree = x.m_flat_tree; return *this; }
//! <b>Effects</b>: Move constructs a flat_map.
//! Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
flat_map<Key,T,Pred,Alloc>& operator=(detail::moved_object<flat_map<Key, T, Pred, Alloc> > mx)
{ m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; }
#else
flat_map<Key,T,Pred,Alloc>& operator=(flat_map<Key, T, Pred, Alloc> && mx)
{ m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; }
#endif
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return force<key_compare>(m_flat_tree.key_comp()); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return value_compare(force<key_compare>(m_flat_tree.key_comp())); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return force<allocator_type>(m_flat_tree.get_allocator()); }
const stored_allocator_type &get_stored_allocator() const
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
stored_allocator_type &get_stored_allocator()
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return force_copy<iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return force<const_iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return force<const_iterator>(m_flat_tree.cbegin()); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return force_copy<iterator>(m_flat_tree.end()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return force<const_iterator>(m_flat_tree.end()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return force<const_iterator>(m_flat_tree.cend()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return force<reverse_iterator>(m_flat_tree.rbegin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return force<const_reverse_iterator>(m_flat_tree.rbegin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return force<const_reverse_iterator>(m_flat_tree.crbegin()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return force<reverse_iterator>(m_flat_tree.rend()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return force<const_reverse_iterator>(m_flat_tree.rend()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return force<const_reverse_iterator>(m_flat_tree.crend()); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_flat_tree.max_size(); }
//! Effects: If there is no key equivalent to x in the flat_map, inserts
//! value_type(x, T()) into the flat_map.
//!
//! Returns: A reference to the mapped_type corresponding to x in *this.
//!
//! Complexity: Logarithmic.
T &operator[](const key_type& k)
{
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first))
i = insert(i, value_type(k, T()));
return (*i).second;
}
//! Effects: If there is no key equivalent to x in the flat_map, inserts
//! value_type(move(x), T()) into the flat_map (the key is move-constructed)
//!
//! Returns: A reference to the mapped_type corresponding to x in *this.
//!
//! Complexity: Logarithmic.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
T &operator[](detail::moved_object<key_type> mk)
{
key_type &k = mk.get();
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first))
i = insert(i, value_type(k, detail::move_impl(T())));
return (*i).second;
}
#else
T &operator[](key_type &&mk)
{
key_type &k = mk;
iterator i = lower_bound(k);
// i->first is greater than or equivalent to k.
if (i == end() || key_comp()(k, (*i).first))
i = insert(i, value_type(detail::forward_impl<key_type>(k), detail::move_impl(T())));
return (*i).second;
}
#endif
//! Returns: A reference to the element whose key is equivalent to x.
//! Throws: An exception object of type out_of_range if no such element is present.
//! Complexity: logarithmic.
T& at(const key_type& k)
{
iterator i = this->find(k);
if(i == this->end()){
throw std::out_of_range("key not found");
}
return i->second;
}
//! Returns: A reference to the element whose key is equivalent to x.
//! Throws: An exception object of type out_of_range if no such element is present.
//! Complexity: logarithmic.
const T& at(const key_type& k) const
{
const_iterator i = this->find(k);
if(i == this->end()){
throw std::out_of_range("key not found");
}
return i->second;
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
void swap(detail::moved_object<flat_map> x)
{ this->swap(x.get()); }
void swap(flat_map& x)
#else
void swap(flat_map &&x)
#endif
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
std::pair<iterator,bool> insert(const value_type& x)
{ return force<std::pair<iterator,bool> >(
m_flat_tree.insert_unique(force<impl_value_type>(x))); }
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
std::pair<iterator,bool> insert(detail::moved_object<value_type> x)
{ return force<std::pair<iterator,bool> >(
m_flat_tree.insert_unique(force<impl_moved_value_type>(x))); }
#else
std::pair<iterator,bool> insert(value_type &&x)
{ return force<std::pair<iterator,bool> >(
m_flat_tree.insert_unique(detail::move_impl(force<impl_value_type>(x)))); }
#endif
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, const value_type& x)
{ return force_copy<iterator>(
m_flat_tree.insert_unique(force<impl_const_iterator>(position), force<impl_value_type>(x))); }
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(const_iterator position, detail::moved_object<value_type> x)
{ return force_copy<iterator>(
m_flat_tree.insert_unique(force<impl_const_iterator>(position), force<impl_moved_value_type>(x))); }
#else
iterator insert(const_iterator position, value_type &&x)
{ return force_copy<iterator>(
m_flat_tree.insert_unique(force<impl_const_iterator>(position), detail::move_impl(force<impl_value_type>(x)))); }
#endif
//! <b>Requires</b>: i, j are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [i,j) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_unique(first, last); }
#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace(Args&&... args)
{ return force_copy<iterator>(m_flat_tree.emplace_unique(detail::forward_impl<Args>(args)...)); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint), detail::forward_impl<Args>(args)...)); }
#else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
iterator emplace()
{ return force_copy<iterator>(m_flat_tree.emplace_unique()); }
iterator emplace_hint(const_iterator hint)
{ return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint))); }
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
return force_copy<iterator>(m_flat_tree.emplace_unique \
(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
} \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
return force_copy<iterator>(m_flat_tree.emplace_hint_unique \
(force<impl_const_iterator>(hint), \
BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
iterator erase(const_iterator position)
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ m_flat_tree.shrink_to_fit(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return force_copy<iterator>(m_flat_tree.find(x)); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
const_iterator find(const key_type& x) const
{ return force<const_iterator>(m_flat_tree.find(x)); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return force_copy<iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return force<const_iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return force_copy<iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return force<const_iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
{ return force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
template <class K1, class T1, class C1, class A1>
friend bool operator== (const flat_map<K1, T1, C1, A1>&,
const flat_map<K1, T1, C1, A1>&);
template <class K1, class T1, class C1, class A1>
friend bool operator< (const flat_map<K1, T1, C1, A1>&,
const flat_map<K1, T1, C1, A1>&);
/// @endcond
};
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator!=(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y)
{ return !(x == y); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y)
{ return y < x; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<=(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y)
{ return !(y < x); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>=(const flat_map<Key,T,Pred,Alloc>& x,
const flat_map<Key,T,Pred,Alloc>& y)
{ return !(x < y); }
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
template <class Key, class T, class Pred, class Alloc>
inline void swap(flat_map<Key,T,Pred,Alloc>& x,
flat_map<Key,T,Pred,Alloc>& y)
{ x.swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(detail::moved_object<flat_map<Key,T,Pred,Alloc> > x,
flat_map<Key,T,Pred,Alloc>& y)
{ x.get().swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(flat_map<Key,T,Pred,Alloc>& x,
detail::moved_object<flat_map<Key,T,Pred,Alloc> > y)
{ x.swap(y.get()); }
#else
template <class Key, class T, class Pred, class Alloc>
inline void swap(flat_map<Key,T,Pred,Alloc>&&x,
flat_map<Key,T,Pred,Alloc>&&y)
{ x.swap(y); }
#endif
/// @cond
//!This class is movable
template <class K, class T, class C, class A>
struct is_movable<flat_map<K, T, C, A> >
{
enum { value = true };
};
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class T, class C, class A>
struct has_trivial_destructor_after_move<flat_map<K, T, C, A> >
{
enum { value =
has_trivial_destructor<A>::value &&
has_trivial_destructor<C>::value };
};
// Forward declaration of operators < and ==, needed for friend declaration.
template <class Key, class T,
class Pred,
class Alloc>
class flat_multimap;
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y);
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y);
/// @endcond
//! A flat_multimap is a kind of associative container that supports equivalent keys
//! (possibly containing multiple copies of the same key value) and provides for
//! fast retrieval of values of another type T based on the keys. The flat_multimap
//! class supports random-access iterators.
//!
//! A flat_multimap satisfies all of the requirements of a container and of a reversible
//! container and of an associative container. For a
//! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
//! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
//!
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
//!
//! Alloc is the allocator to allocate the value_types
//! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>).
template <class Key, class T, class Pred, class Alloc>
class flat_multimap
{
/// @cond
private:
typedef detail::flat_tree<Key,
std::pair<Key, T>,
detail::select1st< std::pair<Key, T> >,
Pred,
Alloc> tree_t;
//#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
//This is the real tree stored here. It's based on a movable pair
typedef detail::flat_tree<Key,
detail::pair<Key, T>,
detail::select1st< detail::pair<Key, T> >,
Pred,
typename Alloc::template
rebind<detail::pair<Key, T> >::other> impl_tree_t;
/*
#else
typedef tree_t impl_tree_t;
#endif
*/
impl_tree_t m_flat_tree; // flat tree representing flat_map
typedef typename impl_tree_t::value_type impl_value_type;
typedef typename impl_tree_t::pointer impl_pointer;
typedef typename impl_tree_t::const_pointer impl_const_pointer;
typedef typename impl_tree_t::reference impl_reference;
typedef typename impl_tree_t::const_reference impl_const_reference;
typedef typename impl_tree_t::value_compare impl_value_compare;
typedef typename impl_tree_t::iterator impl_iterator;
typedef typename impl_tree_t::const_iterator impl_const_iterator;
typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
typedef typename impl_tree_t::allocator_type impl_allocator_type;
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
typedef detail::moved_object<impl_value_type> impl_moved_value_type;
#endif
//#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template<class D, class S>
static D &force(const S &s)
{ return *const_cast<D*>((reinterpret_cast<const D*>(&s))); }
template<class D, class S>
static D force_copy(S s)
{
value_type *vp = reinterpret_cast<value_type *>(&*s);
return D(vp);
}
/// @endcond
public:
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef typename tree_t::value_compare value_compare;
typedef T mapped_type;
typedef typename tree_t::key_compare key_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison
//! object and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit flat_multimap(const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_flat_tree(comp, force<impl_allocator_type>(a)) { }
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object
//! and allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
flat_multimap(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_flat_tree(comp, force<impl_allocator_type>(a))
{ m_flat_tree.insert_equal(first, last); }
//! <b>Effects</b>: Copy constructs a flat_multimap.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_multimap(const flat_multimap<Key,T,Pred,Alloc>& x)
: m_flat_tree(x.m_flat_tree) { }
//! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
flat_multimap(detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > x)
: m_flat_tree(detail::move_impl(x.get().m_flat_tree)) { }
#else
flat_multimap(flat_multimap<Key,T,Pred,Alloc> && x)
: m_flat_tree(detail::move_impl(x.m_flat_tree)) { }
#endif
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_multimap<Key,T,Pred,Alloc>& operator=(const flat_multimap<Key,T,Pred,Alloc>& x)
{ m_flat_tree = x.m_flat_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
flat_multimap<Key,T,Pred,Alloc>& operator=(detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > mx)
{ m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; }
#else
flat_multimap<Key,T,Pred,Alloc>& operator=(flat_multimap<Key,T,Pred,Alloc> && mx)
{ m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; }
#endif
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return force<key_compare>(m_flat_tree.key_comp()); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return value_compare(force<key_compare>(m_flat_tree.key_comp())); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return force<allocator_type>(m_flat_tree.get_allocator()); }
const stored_allocator_type &get_stored_allocator() const
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
stored_allocator_type &get_stored_allocator()
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return force_copy<iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return force<const_iterator>(m_flat_tree.begin()); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return force_copy<iterator>(m_flat_tree.end()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return force<const_iterator>(m_flat_tree.end()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return force<reverse_iterator>(m_flat_tree.rbegin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return force<const_reverse_iterator>(m_flat_tree.rbegin()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return force<reverse_iterator>(m_flat_tree.rend()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return force<const_reverse_iterator>(m_flat_tree.rend()); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
void swap(detail::moved_object<flat_multimap> x)
{ this->swap(x.get()); }
void swap(flat_multimap& x)
#else
void swap(flat_multimap &&x)
#endif
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const value_type& x)
{ return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_value_type>(x))); }
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns
//! the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(detail::moved_object<value_type> x)
{ return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_moved_value_type>(x))); }
#else
iterator insert(value_type &&x)
{ return force_copy<iterator>(m_flat_tree.insert_equal(detail::move_impl(x))); }
#endif
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant time if the value
//! is to be inserted before p) plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, const value_type& x)
{ return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), force<impl_value_type>(x))); }
//! <b>Effects</b>: Inserts a value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant time if the value
//! is to be inserted before p) plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
iterator insert(const_iterator position, detail::moved_object<value_type> x)
{ return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), force<impl_moved_value_type>(x))); }
#else
iterator insert(const_iterator position, value_type &&x)
{ return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), detail::move_impl(x))); }
#endif
//! <b>Requires</b>: i, j are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [i,j) .
//!
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_equal(first, last); }
#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace(Args&&... args)
{ return force_copy<iterator>(m_flat_tree.emplace_equal(detail::forward_impl<Args>(args)...)); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant time if the value
//! is to be inserted before p) plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{
return force_copy<iterator>(m_flat_tree.emplace_hint_equal
(force<impl_const_iterator>(hint), detail::forward_impl<Args>(args)...));
}
#else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
iterator emplace()
{ return force_copy<iterator>(m_flat_tree.emplace_equal()); }
iterator emplace_hint(const_iterator hint)
{ return force_copy<iterator>(m_flat_tree.emplace_hint_equal(force<impl_const_iterator>(hint))); }
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
return force_copy<iterator>(m_flat_tree.emplace_equal \
(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
} \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
{ \
return force_copy<iterator>(m_flat_tree.emplace_hint_equal \
(force<impl_const_iterator>(hint), \
BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
iterator erase(const_iterator position)
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ m_flat_tree.shrink_to_fit(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return force_copy<iterator>(m_flat_tree.find(x)); }
//! <b>Returns</b>: An const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
const_iterator find(const key_type& x) const
{ return force<const_iterator>(m_flat_tree.find(x)); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_flat_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{return force_copy<iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key
//! not less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return force<const_iterator>(m_flat_tree.lower_bound(x)); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{return force_copy<iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Returns</b>: A const iterator pointing to the first element with key
//! not less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return force<const_iterator>(m_flat_tree.upper_bound(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator,const_iterator>
equal_range(const key_type& x) const
{ return force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
template <class K1, class T1, class C1, class A1>
friend bool operator== (const flat_multimap<K1, T1, C1, A1>& x,
const flat_multimap<K1, T1, C1, A1>& y);
template <class K1, class T1, class C1, class A1>
friend bool operator< (const flat_multimap<K1, T1, C1, A1>& x,
const flat_multimap<K1, T1, C1, A1>& y);
/// @endcond
};
template <class Key, class T, class Pred, class Alloc>
inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator!=(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y)
{ return !(x == y); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y)
{ return y < x; }
template <class Key, class T, class Pred, class Alloc>
inline bool operator<=(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y)
{ return !(y < x); }
template <class Key, class T, class Pred, class Alloc>
inline bool operator>=(const flat_multimap<Key,T,Pred,Alloc>& x,
const flat_multimap<Key,T,Pred,Alloc>& y)
{ return !(x < y); }
#if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
template <class Key, class T, class Pred, class Alloc>
inline void swap(flat_multimap<Key,T,Pred,Alloc>& x,
flat_multimap<Key,T,Pred,Alloc>& y)
{ x.swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > x,
flat_multimap<Key,T,Pred,Alloc>& y)
{ x.get().swap(y); }
template <class Key, class T, class Pred, class Alloc>
inline void swap(flat_multimap<Key,T,Pred,Alloc>& x,
detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > y)
{ x.swap(y.get()); }
#else
template <class Key, class T, class Pred, class Alloc>
inline void swap(flat_multimap<Key,T,Pred,Alloc>&&x,
flat_multimap<Key,T,Pred,Alloc>&&y)
{ x.swap(y); }
#endif
/// @cond
//!This class is movable
template <class K, class T, class C, class A>
struct is_movable<flat_multimap<K, T, C, A> >
{
enum { value = true };
};
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class T, class C, class A>
struct has_trivial_destructor_after_move<flat_multimap<K, T, C, A> >
{
enum { value =
has_trivial_destructor<A>::value &&
has_trivial_destructor<C>::value };
};
/// @endcond
}} //namespace boost { namespace interprocess {
#include <boost/interprocess/detail/config_end.hpp>
#endif /* BOOST_INTERPROCESS_FLAT_MAP_HPP */