boost/heap/binomial_heap.hpp
// boost heap: binomial heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_BINOMIAL_HEAP_HPP
#define BOOST_HEAP_BINOMIAL_HEAP_HPP
#include <algorithm>
#include <utility>
#include <vector>
#include <boost/assert.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/heap_node.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/tree_iterator.hpp>
#include <boost/type_traits/integral_constant.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
# pragma once
#endif
#ifndef BOOST_DOXYGEN_INVOKED
# ifdef BOOST_HEAP_SANITYCHECKS
# define BOOST_HEAP_ASSERT BOOST_ASSERT
# else
# define BOOST_HEAP_ASSERT( expression )
# endif
#endif
namespace boost { namespace heap {
namespace detail {
typedef parameter::parameters< boost::parameter::optional< tag::allocator >,
boost::parameter::optional< tag::compare >,
boost::parameter::optional< tag::stable >,
boost::parameter::optional< tag::constant_time_size >,
boost::parameter::optional< tag::stability_counter_type > >
binomial_heap_signature;
template < typename T, typename Parspec >
struct make_binomial_heap_base
{
static const bool constant_time_size
= parameter::binding< Parspec, tag::constant_time_size, boost::true_type >::type::value;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::type base_type;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::allocator_argument allocator_argument;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::compare_argument compare_argument;
typedef parent_pointing_heap_node< typename base_type::internal_type > node_type;
typedef typename boost::allocator_rebind< allocator_argument, node_type >::type allocator_type;
struct type : base_type, allocator_type
{
type( compare_argument const& arg ) :
base_type( arg )
{}
type( allocator_type const& alloc ) :
allocator_type( alloc )
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
type( type const& rhs ) :
base_type( rhs ),
allocator_type( rhs )
{}
type( type&& rhs ) :
base_type( std::move( static_cast< base_type& >( rhs ) ) ),
allocator_type( std::move( static_cast< allocator_type& >( rhs ) ) )
{}
type& operator=( type&& rhs )
{
base_type::operator=( std::move( static_cast< base_type& >( rhs ) ) );
allocator_type::operator=( std::move( static_cast< allocator_type& >( rhs ) ) );
return *this;
}
type& operator=( type const& rhs )
{
base_type::operator=( static_cast< base_type const& >( rhs ) );
allocator_type::operator=( static_cast< allocator_type const& >( rhs ) );
return *this;
}
#endif
};
};
} // namespace detail
/**
* \class binomial_heap
* \brief binomial heap
*
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
* - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template < class T, class... Options >
#else
template < typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_ >
#endif
class binomial_heap :
private detail::make_binomial_heap_base< T, typename detail::binomial_heap_signature::bind< A0, A1, A2, A3 >::type >::type
{
typedef typename detail::binomial_heap_signature::bind< A0, A1, A2, A3 >::type bound_args;
typedef detail::make_binomial_heap_base< T, bound_args > base_maker;
typedef typename base_maker::type super_t;
typedef typename super_t::internal_type internal_type;
typedef typename super_t::size_holder_type size_holder;
typedef typename super_t::stability_counter_type stability_counter_type;
typedef typename base_maker::allocator_argument allocator_argument;
template < typename Heap1, typename Heap2 >
friend struct heap_merge_emulate;
public:
static const bool constant_time_size = super_t::constant_time_size;
static const bool has_ordered_iterators = true;
static const bool is_mergable = true;
static const bool is_stable = detail::extract_stable< bound_args >::value;
static const bool has_reserve = false;
private:
#ifndef BOOST_DOXYGEN_INVOKED
struct implementation_defined : detail::extract_allocator_types< typename base_maker::allocator_argument >
{
typedef T value_type;
typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::size_type size_type;
typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::reference reference;
typedef typename base_maker::compare_argument value_compare;
typedef typename base_maker::allocator_type allocator_type;
typedef typename base_maker::node_type node;
typedef typename boost::allocator_pointer< allocator_type >::type node_pointer;
typedef typename boost::allocator_const_pointer< allocator_type >::type const_node_pointer;
typedef detail::node_handle< node_pointer, super_t, reference > handle_type;
typedef typename base_maker::node_type node_type;
typedef boost::intrusive::list< detail::heap_node_base< false >, boost::intrusive::constant_time_size< true > >
node_list_type;
typedef typename node_list_type::iterator node_list_iterator;
typedef typename node_list_type::const_iterator node_list_const_iterator;
typedef detail::value_extractor< value_type, internal_type, super_t > value_extractor;
typedef detail::recursive_tree_iterator< node_type,
node_list_const_iterator,
const value_type,
value_extractor,
detail::list_iterator_converter< node_type, node_list_type > >
iterator;
typedef iterator const_iterator;
typedef detail::tree_iterator< node_type,
const value_type,
allocator_type,
value_extractor,
detail::list_iterator_converter< node_type, node_list_type >,
true,
true,
value_compare >
ordered_iterator;
};
#endif
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/// \copydoc boost::heap::priority_queue::iterator
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::ordered_iterator ordered_iterator;
typedef typename implementation_defined::handle_type handle_type;
private:
typedef typename implementation_defined::node_type node_type;
typedef typename implementation_defined::node_list_type node_list_type;
typedef typename implementation_defined::node_pointer node_pointer;
typedef typename implementation_defined::const_node_pointer const_node_pointer;
typedef typename implementation_defined::node_list_iterator node_list_iterator;
typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator;
typedef typename super_t::internal_compare internal_compare;
public:
/// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
explicit binomial_heap( value_compare const& cmp = value_compare() ) :
super_t( cmp ),
top_element( 0 )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(allocator_type const &)
explicit binomial_heap( allocator_type const& alloc ) :
super_t( alloc ),
top_element( 0 )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
binomial_heap( binomial_heap const& rhs ) :
super_t( rhs ),
top_element( 0 )
{
if ( rhs.empty() )
return;
clone_forest( rhs );
size_holder::set_size( rhs.get_size() );
}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue const &)
binomial_heap& operator=( binomial_heap const& rhs )
{
clear();
size_holder::set_size( rhs.get_size() );
static_cast< super_t& >( *this ) = rhs;
if ( rhs.empty() )
top_element = NULL;
else
clone_forest( rhs );
return *this;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
binomial_heap( binomial_heap&& rhs ) :
super_t( std::move( rhs ) ),
top_element( rhs.top_element )
{
trees.splice( trees.begin(), rhs.trees );
rhs.top_element = NULL;
}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
binomial_heap& operator=( binomial_heap&& rhs )
{
clear();
super_t::operator=( std::move( rhs ) );
trees.splice( trees.begin(), rhs.trees );
top_element = rhs.top_element;
rhs.top_element = NULL;
return *this;
}
#endif
~binomial_heap( void )
{
clear();
}
/// \copydoc boost::heap::priority_queue::empty
bool empty( void ) const
{
return top_element == NULL;
}
/**
* \b Effects: Returns the number of elements contained in the priority queue.
*
* \b Complexity: Constant, if configured with constant_time_size<true>, otherwise linear.
*
* */
size_type size( void ) const
{
if ( constant_time_size )
return size_holder::get_size();
if ( empty() )
return 0;
else
return detail::count_list_nodes< node_type, node_list_type >( trees );
}
/// \copydoc boost::heap::priority_queue::max_size
size_type max_size( void ) const
{
const allocator_type& alloc = *this;
return boost::allocator_max_size( alloc );
}
/// \copydoc boost::heap::priority_queue::clear
void clear( void )
{
typedef detail::node_disposer< node_type, typename node_list_type::value_type, allocator_type > disposer;
trees.clear_and_dispose( disposer( *this ) );
size_holder::set_size( 0 );
top_element = NULL;
}
/// \copydoc boost::heap::priority_queue::get_allocator
allocator_type get_allocator( void ) const
{
return *this;
}
/// \copydoc boost::heap::priority_queue::swap
void swap( binomial_heap& rhs )
{
super_t::swap( rhs );
std::swap( top_element, rhs.top_element );
trees.swap( rhs.trees );
}
/// \copydoc boost::heap::priority_queue::top
const_reference top( void ) const
{
BOOST_ASSERT( !empty() );
return super_t::get_value( top_element->value );
}
/**
* \b Effects: Adds a new element to the priority queue. Returns handle to element
*
* \b Complexity: Logarithmic.
*
* */
handle_type push( value_type const& v )
{
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node_type( super_t::make_node( v ) );
insert_node( trees.begin(), n );
if ( !top_element || super_t::operator()( top_element->value, n->value ) )
top_element = n;
size_holder::increment();
sanity_check();
return handle_type( n );
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES ) && !defined( BOOST_NO_CXX11_VARIADIC_TEMPLATES )
/**
* \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns
* handle to element.
*
* \b Complexity: Logarithmic.
*
* */
template < class... Args >
handle_type emplace( Args&&... args )
{
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node_type( super_t::make_node( std::forward< Args >( args )... ) );
insert_node( trees.begin(), n );
if ( !top_element || super_t::operator()( top_element->value, n->value ) )
top_element = n;
size_holder::increment();
sanity_check();
return handle_type( n );
}
#endif
/**
* \b Effects: Removes the top element from the priority queue.
*
* \b Complexity: Logarithmic.
*
* */
void pop( void )
{
BOOST_ASSERT( !empty() );
node_pointer element = top_element;
trees.erase( node_list_type::s_iterator_to( *element ) );
size_holder::decrement();
if ( element->child_count() ) {
size_type sz = ( 1 << element->child_count() ) - 1;
binomial_heap children( value_comp(), element->children, sz );
if ( trees.empty() ) {
stability_counter_type stability_count = super_t::get_stability_count();
size_t size = constant_time_size ? size_holder::get_size() : 0;
swap( children );
super_t::set_stability_count( stability_count );
if ( constant_time_size )
size_holder::set_size( size );
} else
merge_and_clear_nodes( children );
}
if ( trees.empty() )
top_element = NULL;
else
update_top_element();
element->~node_type();
allocator_type& alloc = *this;
alloc.deallocate( element, 1 );
sanity_check();
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* */
void update( handle_type handle, const_reference v )
{
if ( super_t::operator()( super_t::get_value( handle.node_->value ), v ) )
increase( handle, v );
else
decrease( handle, v );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void update( handle_type handle )
{
node_pointer this_node = handle.node_;
if ( this_node->parent ) {
if ( super_t::operator()( super_t::get_value( this_node->parent->value ),
super_t::get_value( this_node->value ) ) )
increase( handle );
else
decrease( handle );
} else
decrease( handle );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be greater than the current one
* */
void increase( handle_type handle, const_reference v )
{
handle.node_->value = super_t::make_node( v );
increase( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void increase( handle_type handle )
{
node_pointer n = handle.node_;
siftup( n, *this );
update_top_element();
sanity_check();
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one
* */
void decrease( handle_type handle, const_reference v )
{
handle.node_->value = super_t::make_node( v );
decrease( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has
* been updated, the behavior of the data structure is undefined!
* */
void decrease( handle_type handle )
{
node_pointer n = handle.node_;
siftdown( n );
update_top_element();
}
/**
* \b Effects: Merge with priority queue rhs.
*
* \b Complexity: Logarithmic.
*
* */
void merge( binomial_heap& rhs )
{
if ( rhs.empty() )
return;
if ( empty() ) {
swap( rhs );
return;
}
size_type new_size = size_holder::get_size() + rhs.get_size();
merge_and_clear_nodes( rhs );
size_holder::set_size( new_size );
rhs.set_size( 0 );
rhs.top_element = NULL;
super_t::set_stability_count( ( std::max )( super_t::get_stability_count(), rhs.get_stability_count() ) );
rhs.set_stability_count( 0 );
}
public:
/// \copydoc boost::heap::priority_queue::begin
iterator begin( void ) const
{
return iterator( trees.begin() );
}
/// \copydoc boost::heap::priority_queue::end
iterator end( void ) const
{
return iterator( trees.end() );
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_begin( void ) const
{
return ordered_iterator( trees.begin(), trees.end(), top_element, super_t::value_comp() );
}
/// \copydoc boost::heap::fibonacci_heap::ordered_end
ordered_iterator ordered_end( void ) const
{
return ordered_iterator( NULL, super_t::value_comp() );
}
/**
* \b Effects: Removes the element handled by \c handle from the priority_queue.
*
* \b Complexity: Logarithmic.
* */
void erase( handle_type handle )
{
node_pointer n = handle.node_;
siftup( n, force_inf() );
top_element = n;
pop();
}
/// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator
static handle_type s_handle_from_iterator( iterator const& it )
{
node_type* ptr = const_cast< node_type* >( it.get_node() );
return handle_type( ptr );
}
/// \copydoc boost::heap::priority_queue::value_comp
value_compare const& value_comp( void ) const
{
return super_t::value_comp();
}
/// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
template < typename HeapType >
bool operator<( HeapType const& rhs ) const
{
return detail::heap_compare( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
template < typename HeapType >
bool operator>( HeapType const& rhs ) const
{
return detail::heap_compare( rhs, *this );
}
/// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
template < typename HeapType >
bool operator>=( HeapType const& rhs ) const
{
return !operator<( rhs );
}
/// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
template < typename HeapType >
bool operator<=( HeapType const& rhs ) const
{
return !operator>( rhs );
}
/// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
template < typename HeapType >
bool operator==( HeapType const& rhs ) const
{
return detail::heap_equality( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
template < typename HeapType >
bool operator!=( HeapType const& rhs ) const
{
return !( *this == rhs );
}
private:
#if !defined( BOOST_DOXYGEN_INVOKED )
void merge_and_clear_nodes( binomial_heap& rhs )
{
BOOST_HEAP_ASSERT( !empty() );
BOOST_HEAP_ASSERT( !rhs.empty() );
node_list_iterator this_iterator = trees.begin();
node_pointer carry_node = NULL;
while ( !rhs.trees.empty() ) {
node_pointer rhs_node = static_cast< node_pointer >( &rhs.trees.front() );
size_type rhs_degree = rhs_node->child_count();
if ( super_t::operator()( top_element->value, rhs_node->value ) )
top_element = rhs_node;
try_again:
node_pointer this_node = static_cast< node_pointer >( &*this_iterator );
size_type this_degree = this_node->child_count();
sorted_by_degree();
rhs.sorted_by_degree();
if ( this_degree == rhs_degree ) {
if ( carry_node ) {
if ( carry_node->child_count() < this_degree ) {
trees.insert( this_iterator, *carry_node );
carry_node = NULL;
} else {
rhs.trees.pop_front();
carry_node = merge_trees( carry_node, rhs_node );
}
++this_iterator;
} else {
this_iterator = trees.erase( this_iterator );
rhs.trees.pop_front();
carry_node = merge_trees( this_node, rhs_node );
}
if ( this_iterator == trees.end() )
break;
else
continue;
}
if ( this_degree < rhs_degree ) {
if ( carry_node ) {
if ( carry_node->child_count() < this_degree ) {
trees.insert( this_iterator, *carry_node );
carry_node = NULL;
++this_iterator;
} else if ( carry_node->child_count() == rhs_degree ) {
rhs.trees.pop_front();
carry_node = merge_trees( carry_node, rhs_node );
continue;
} else {
this_iterator = trees.erase( this_iterator );
carry_node = merge_trees( this_node, carry_node );
}
goto try_again;
} else {
++this_iterator;
if ( this_iterator == trees.end() )
break;
goto try_again;
}
if ( this_iterator == trees.end() )
break;
else
continue;
}
if ( this_degree > rhs_degree ) {
rhs.trees.pop_front();
if ( carry_node ) {
if ( carry_node->child_count() < rhs_degree ) {
trees.insert( this_iterator, *carry_node );
trees.insert( this_iterator, *rhs_node );
carry_node = NULL;
} else
carry_node = merge_trees( rhs_node, carry_node );
} else
trees.insert( this_iterator, *rhs_node );
}
}
if ( !rhs.trees.empty() ) {
if ( carry_node ) {
node_list_iterator rhs_it = rhs.trees.begin();
while ( static_cast< node_pointer >( &*rhs_it )->child_count() < carry_node->child_count() )
++rhs_it;
rhs.insert_node( rhs_it, carry_node );
rhs.increment();
sorted_by_degree();
rhs.sorted_by_degree();
if ( trees.empty() ) {
trees.splice( trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end() );
update_top_element();
} else
merge_and_clear_nodes( rhs );
} else
trees.splice( trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end() );
return;
}
if ( carry_node )
insert_node( this_iterator, carry_node );
}
void clone_forest( binomial_heap const& rhs )
{
BOOST_HEAP_ASSERT( trees.empty() );
typedef typename node_type::template node_cloner< allocator_type > node_cloner;
trees.clone_from( rhs.trees, node_cloner( *this, NULL ), detail::nop_disposer() );
update_top_element();
}
struct force_inf
{
template < typename X >
bool operator()( X const&, X const& ) const
{
return false;
}
};
template < typename Compare >
void siftup( node_pointer n, Compare const& cmp )
{
while ( n->parent ) {
node_pointer parent = n->parent;
node_pointer grand_parent = parent->parent;
if ( cmp( n->value, parent->value ) )
return;
n->remove_from_parent();
n->swap_children( parent );
n->update_children();
parent->update_children();
if ( grand_parent ) {
parent->remove_from_parent();
grand_parent->add_child( n );
} else {
node_list_iterator it = trees.erase( node_list_type::s_iterator_to( *parent ) );
trees.insert( it, *n );
}
n->add_child( parent );
}
}
void siftdown( node_pointer n )
{
while ( n->child_count() ) {
node_pointer max_child
= detail::find_max_child< node_list_type, node_type, internal_compare >( n->children,
super_t::get_internal_cmp() );
if ( super_t::operator()( max_child->value, n->value ) )
return;
max_child->remove_from_parent();
n->swap_children( max_child );
n->update_children();
max_child->update_children();
node_pointer parent = n->parent;
if ( parent ) {
n->remove_from_parent();
max_child->add_child( n );
parent->add_child( max_child );
} else {
node_list_iterator position = trees.erase( node_list_type::s_iterator_to( *n ) );
max_child->add_child( n );
trees.insert( position, *max_child );
}
}
}
void insert_node( node_list_iterator it, node_pointer n )
{
if ( it != trees.end() )
BOOST_HEAP_ASSERT( static_cast< node_pointer >( &*it )->child_count() >= n->child_count() );
while ( true ) {
BOOST_HEAP_ASSERT( !n->is_linked() );
if ( it == trees.end() )
break;
node_pointer this_node = static_cast< node_pointer >( &*it );
size_type this_degree = this_node->child_count();
size_type n_degree = n->child_count();
if ( this_degree == n_degree ) {
BOOST_HEAP_ASSERT( it->is_linked() );
it = trees.erase( it );
n = merge_trees( n, this_node );
} else
break;
}
trees.insert( it, *n );
}
// private constructor, just used in pop()
explicit binomial_heap( value_compare const& cmp, node_list_type& child_list, size_type size ) :
super_t( cmp )
{
size_holder::set_size( size );
if ( size )
top_element = static_cast< node_pointer >( &*child_list.begin() ); // not correct, but we will reset it later
else
top_element = NULL;
for ( node_list_iterator it = child_list.begin(); it != child_list.end(); ++it ) {
node_pointer n = static_cast< node_pointer >( &*it );
n->parent = NULL;
}
trees.splice( trees.end(), child_list, child_list.begin(), child_list.end() );
trees.sort( detail::cmp_by_degree< node_type >() );
}
node_pointer merge_trees( node_pointer node1, node_pointer node2 )
{
BOOST_HEAP_ASSERT( node1->child_count() == node2->child_count() );
if ( super_t::operator()( node1->value, node2->value ) )
std::swap( node1, node2 );
if ( node2->parent )
node2->remove_from_parent();
node1->add_child( node2 );
return node1;
}
void update_top_element( void )
{
top_element
= detail::find_max_child< node_list_type, node_type, internal_compare >( trees,
super_t::get_internal_cmp() );
}
void sorted_by_degree( void ) const
{
# ifdef BOOST_HEAP_SANITYCHECKS
int degree = -1;
for ( node_list_const_iterator it = trees.begin(); it != trees.end(); ++it ) {
const_node_pointer n = static_cast< const_node_pointer >( &*it );
BOOST_HEAP_ASSERT( int( n->child_count() ) > degree );
degree = n->child_count();
BOOST_HEAP_ASSERT( ( detail::is_heap< node_type, super_t >( n, *this ) ) );
size_type child_nodes = detail::count_nodes< node_type >( n );
BOOST_HEAP_ASSERT( child_nodes
== size_type( 1 << static_cast< const_node_pointer >( &*it )->child_count() ) );
}
# endif
}
void sanity_check( void )
{
# ifdef BOOST_HEAP_SANITYCHECKS
sorted_by_degree();
if ( !empty() ) {
node_pointer found_top
= detail::find_max_child< node_list_type, node_type, internal_compare >( trees,
super_t::get_internal_cmp() );
BOOST_HEAP_ASSERT( top_element == found_top );
}
if ( constant_time_size ) {
size_t counted = detail::count_list_nodes< node_type, node_list_type >( trees );
size_t stored = size_holder::get_size();
BOOST_HEAP_ASSERT( counted == stored );
}
# endif
}
node_pointer top_element;
node_list_type trees;
#endif // BOOST_DOXYGEN_INVOKED
};
}} // namespace boost::heap
#undef BOOST_HEAP_ASSERT
#endif /* BOOST_HEAP_D_ARY_HEAP_HPP */