boost/heap/pairing_heap.hpp
// boost heap: pairing heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_PAIRING_HEAP_HPP
#define BOOST_HEAP_PAIRING_HEAP_HPP
#include <algorithm>
#include <utility>
#include <boost/assert.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/heap_node.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/tree_iterator.hpp>
#include <boost/heap/policies.hpp>
#include <boost/type_traits/integral_constant.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
# pragma once
#endif
#ifndef BOOST_DOXYGEN_INVOKED
# ifdef BOOST_HEAP_SANITYCHECKS
# define BOOST_HEAP_ASSERT BOOST_ASSERT
# else
# define BOOST_HEAP_ASSERT( expression )
# endif
#endif
namespace boost { namespace heap {
namespace detail {
typedef parameter::parameters< boost::parameter::optional< tag::allocator >,
boost::parameter::optional< tag::compare >,
boost::parameter::optional< tag::stable >,
boost::parameter::optional< tag::constant_time_size >,
boost::parameter::optional< tag::stability_counter_type > >
pairing_heap_signature;
template < typename T, typename Parspec >
struct make_pairing_heap_base
{
static const bool constant_time_size
= parameter::binding< Parspec, tag::constant_time_size, boost::true_type >::type::value;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::type base_type;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::allocator_argument allocator_argument;
typedef typename detail::make_heap_base< T, Parspec, constant_time_size >::compare_argument compare_argument;
typedef heap_node< typename base_type::internal_type, false > node_type;
typedef typename boost::allocator_rebind< allocator_argument, node_type >::type allocator_type;
struct type : base_type, allocator_type
{
type( compare_argument const& arg ) :
base_type( arg )
{}
type( allocator_type const& arg ) :
allocator_type( arg )
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
type( type const& rhs ) :
base_type( rhs ),
allocator_type( rhs )
{}
type( type&& rhs ) :
base_type( std::move( static_cast< base_type& >( rhs ) ) ),
allocator_type( std::move( static_cast< allocator_type& >( rhs ) ) )
{}
type& operator=( type&& rhs )
{
base_type::operator=( std::move( static_cast< base_type& >( rhs ) ) );
allocator_type::operator=( std::move( static_cast< allocator_type& >( rhs ) ) );
return *this;
}
type& operator=( type const& rhs )
{
base_type::operator=( static_cast< base_type const& >( rhs ) );
allocator_type::operator=( static_cast< const allocator_type& >( rhs ) );
return *this;
}
#endif
};
};
} // namespace detail
/**
* \class pairing_heap
* \brief pairing heap
*
* Pairing heaps are self-adjusting binary heaps. Although design and implementation are rather simple,
* the complexity analysis is yet unsolved. For details, consult:
*
* Pettie, Seth (2005), "Towards a final analysis of pairing heaps",
* Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 174-183
*
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
* - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
*
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template < class T, class... Options >
#else
template < typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_,
class A4 = boost::parameter::void_ >
#endif
class pairing_heap :
private detail::make_pairing_heap_base< T, typename detail::pairing_heap_signature::bind< A0, A1, A2, A3, A4 >::type >::type
{
typedef typename detail::pairing_heap_signature::bind< A0, A1, A2, A3, A4 >::type bound_args;
typedef detail::make_pairing_heap_base< T, bound_args > base_maker;
typedef typename base_maker::type super_t;
typedef typename super_t::internal_type internal_type;
typedef typename super_t::size_holder_type size_holder;
typedef typename base_maker::allocator_argument allocator_argument;
private:
template < typename Heap1, typename Heap2 >
friend struct heap_merge_emulate;
#ifndef BOOST_DOXYGEN_INVOKED
struct implementation_defined : detail::extract_allocator_types< typename base_maker::allocator_argument >
{
typedef T value_type;
typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::size_type size_type;
typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::reference reference;
typedef typename base_maker::compare_argument value_compare;
typedef typename base_maker::allocator_type allocator_type;
typedef typename boost::allocator_pointer< allocator_type >::type node_pointer;
typedef typename boost::allocator_const_pointer< allocator_type >::type const_node_pointer;
typedef detail::heap_node_list node_list_type;
typedef typename node_list_type::iterator node_list_iterator;
typedef typename node_list_type::const_iterator node_list_const_iterator;
typedef typename base_maker::node_type node;
typedef detail::value_extractor< value_type, internal_type, super_t > value_extractor;
typedef typename super_t::internal_compare internal_compare;
typedef detail::node_handle< node_pointer, super_t, reference > handle_type;
typedef detail::tree_iterator< node,
const value_type,
allocator_type,
value_extractor,
detail::pointer_to_reference< node >,
false,
false,
value_compare >
iterator;
typedef iterator const_iterator;
typedef detail::tree_iterator< node,
const value_type,
allocator_type,
value_extractor,
detail::pointer_to_reference< node >,
false,
true,
value_compare >
ordered_iterator;
};
typedef typename implementation_defined::node node;
typedef typename implementation_defined::node_pointer node_pointer;
typedef typename implementation_defined::node_list_type node_list_type;
typedef typename implementation_defined::node_list_iterator node_list_iterator;
typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator;
typedef typename implementation_defined::internal_compare internal_compare;
typedef boost::intrusive::list< detail::heap_node_base< true >, boost::intrusive::constant_time_size< false > >
node_child_list;
#endif
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/// \copydoc boost::heap::priority_queue::iterator
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::ordered_iterator ordered_iterator;
typedef typename implementation_defined::handle_type handle_type;
static const bool constant_time_size = super_t::constant_time_size;
static const bool has_ordered_iterators = true;
static const bool is_mergable = true;
static const bool is_stable = detail::extract_stable< bound_args >::value;
static const bool has_reserve = false;
/// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
explicit pairing_heap( value_compare const& cmp = value_compare() ) :
super_t( cmp ),
root( NULL )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(allocator_type const &)
explicit pairing_heap( allocator_type const& alloc ) :
super_t( alloc ),
root( NULL )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
pairing_heap( pairing_heap const& rhs ) :
super_t( rhs ),
root( NULL )
{
if ( rhs.empty() )
return;
clone_tree( rhs );
size_holder::set_size( rhs.get_size() );
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
pairing_heap( pairing_heap&& rhs ) :
super_t( std::move( rhs ) ),
root( rhs.root )
{
rhs.root = NULL;
}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
pairing_heap& operator=( pairing_heap&& rhs )
{
super_t::operator=( std::move( rhs ) );
root = rhs.root;
rhs.root = NULL;
return *this;
}
#endif
/// \copydoc boost::heap::priority_queue::operator=(priority_queue const & rhs)
pairing_heap& operator=( pairing_heap const& rhs )
{
clear();
size_holder::set_size( rhs.get_size() );
static_cast< super_t& >( *this ) = rhs;
clone_tree( rhs );
return *this;
}
~pairing_heap( void )
{
while ( !empty() )
pop();
}
/// \copydoc boost::heap::priority_queue::empty
bool empty( void ) const
{
return root == NULL;
}
/// \copydoc boost::heap::binomial_heap::size
size_type size( void ) const
{
if ( constant_time_size )
return size_holder::get_size();
if ( root == NULL )
return 0;
else
return detail::count_nodes( root );
}
/// \copydoc boost::heap::priority_queue::max_size
size_type max_size( void ) const
{
const allocator_type& alloc = *this;
return boost::allocator_max_size( alloc );
}
/// \copydoc boost::heap::priority_queue::clear
void clear( void )
{
if ( empty() )
return;
root->template clear_subtree< allocator_type >( *this );
root->~node();
allocator_type& alloc = *this;
alloc.deallocate( root, 1 );
root = NULL;
size_holder::set_size( 0 );
}
/// \copydoc boost::heap::priority_queue::get_allocator
allocator_type get_allocator( void ) const
{
return *this;
}
/// \copydoc boost::heap::priority_queue::swap
void swap( pairing_heap& rhs )
{
super_t::swap( rhs );
std::swap( root, rhs.root );
}
/// \copydoc boost::heap::priority_queue::top
const_reference top( void ) const
{
BOOST_ASSERT( !empty() );
return super_t::get_value( root->value );
}
/**
* \b Effects: Adds a new element to the priority queue. Returns handle to element
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
handle_type push( value_type const& v )
{
size_holder::increment();
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node( super_t::make_node( v ) );
merge_node( n );
return handle_type( n );
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES ) && !defined( BOOST_NO_CXX11_VARIADIC_TEMPLATES )
/**
* \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns
* handle to element.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
template < class... Args >
handle_type emplace( Args&&... args )
{
size_holder::increment();
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node( super_t::make_node( std::forward< Args >( args )... ) );
merge_node( n );
return handle_type( n );
}
#endif
/**
* \b Effects: Removes the top element from the priority queue.
*
* \b Complexity: Logarithmic (amortized).
*
* */
void pop( void )
{
BOOST_ASSERT( !empty() );
erase( handle_type( root ) );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
void update( handle_type handle, const_reference v )
{
handle.node_->value = super_t::make_node( v );
update( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void update( handle_type handle )
{
node_pointer n = handle.node_;
n->unlink();
if ( !n->children.empty() )
n = merge_nodes( n, merge_node_list( n->children ) );
if ( n != root )
merge_node( n );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: The new value is expected to be greater than the current one
* */
void increase( handle_type handle, const_reference v )
{
update( handle, v );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void increase( handle_type handle )
{
update( handle );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: The new value is expected to be less than the current one
* */
void decrease( handle_type handle, const_reference v )
{
update( handle, v );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has
* been updated, the behavior of the data structure is undefined!
* */
void decrease( handle_type handle )
{
update( handle );
}
/**
* \b Effects: Removes the element handled by \c handle from the priority_queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
* */
void erase( handle_type handle )
{
node_pointer n = handle.node_;
if ( n != root ) {
n->unlink();
if ( !n->children.empty() )
merge_node( merge_node_list( n->children ) );
} else {
if ( !n->children.empty() )
root = merge_node_list( n->children );
else
root = NULL;
}
size_holder::decrement();
n->~node();
allocator_type& alloc = *this;
alloc.deallocate( n, 1 );
}
/// \copydoc boost::heap::priority_queue::begin
iterator begin( void ) const
{
return iterator( root, super_t::value_comp() );
}
/// \copydoc boost::heap::priority_queue::end
iterator end( void ) const
{
return iterator( super_t::value_comp() );
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_begin( void ) const
{
return ordered_iterator( root, super_t::value_comp() );
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_end( void ) const
{
return ordered_iterator( NULL, super_t::value_comp() );
}
/// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator
static handle_type s_handle_from_iterator( iterator const& it )
{
node* ptr = const_cast< node* >( it.get_node() );
return handle_type( ptr );
}
/**
* \b Effects: Merge all elements from rhs into this
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
void merge( pairing_heap& rhs )
{
if ( rhs.empty() )
return;
merge_node( rhs.root );
size_holder::add( rhs.get_size() );
rhs.set_size( 0 );
rhs.root = NULL;
super_t::set_stability_count( ( std::max )( super_t::get_stability_count(), rhs.get_stability_count() ) );
rhs.set_stability_count( 0 );
}
/// \copydoc boost::heap::priority_queue::value_comp
value_compare const& value_comp( void ) const
{
return super_t::value_comp();
}
/// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
template < typename HeapType >
bool operator<( HeapType const& rhs ) const
{
return detail::heap_compare( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
template < typename HeapType >
bool operator>( HeapType const& rhs ) const
{
return detail::heap_compare( rhs, *this );
}
/// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
template < typename HeapType >
bool operator>=( HeapType const& rhs ) const
{
return !operator<( rhs );
}
/// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
template < typename HeapType >
bool operator<=( HeapType const& rhs ) const
{
return !operator>( rhs );
}
/// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
template < typename HeapType >
bool operator==( HeapType const& rhs ) const
{
return detail::heap_equality( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
template < typename HeapType >
bool operator!=( HeapType const& rhs ) const
{
return !( *this == rhs );
}
private:
#if !defined( BOOST_DOXYGEN_INVOKED )
void clone_tree( pairing_heap const& rhs )
{
BOOST_HEAP_ASSERT( root == NULL );
if ( rhs.empty() )
return;
root = allocator_type::allocate( 1 );
new ( root ) node( static_cast< node const& >( *rhs.root ), static_cast< allocator_type& >( *this ) );
}
void merge_node( node_pointer other )
{
BOOST_HEAP_ASSERT( other );
if ( root != NULL )
root = merge_nodes( root, other );
else
root = other;
}
node_pointer merge_node_list( node_child_list& children )
{
BOOST_HEAP_ASSERT( !children.empty() );
node_pointer merged = merge_first_pair( children );
if ( children.empty() )
return merged;
node_child_list node_list;
node_list.push_back( *merged );
do {
node_pointer next_merged = merge_first_pair( children );
node_list.push_back( *next_merged );
} while ( !children.empty() );
return merge_node_list( node_list );
}
node_pointer merge_first_pair( node_child_list& children )
{
BOOST_HEAP_ASSERT( !children.empty() );
node_pointer first_child = static_cast< node_pointer >( &children.front() );
children.pop_front();
if ( children.empty() )
return first_child;
node_pointer second_child = static_cast< node_pointer >( &children.front() );
children.pop_front();
return merge_nodes( first_child, second_child );
}
node_pointer merge_nodes( node_pointer node1, node_pointer node2 )
{
if ( super_t::operator()( node1->value, node2->value ) )
std::swap( node1, node2 );
node2->unlink();
node1->children.push_front( *node2 );
return node1;
}
node_pointer root;
#endif
};
}} // namespace boost::heap
#undef BOOST_HEAP_ASSERT
#endif /* BOOST_HEAP_PAIRING_HEAP_HPP */