boost/heap/skew_heap.hpp
// boost heap: skew heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_SKEW_HEAP_HPP
#define BOOST_HEAP_SKEW_HEAP_HPP
#include <algorithm>
#include <utility>
#include <boost/array.hpp>
#include <boost/assert.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/heap_node.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/tree_iterator.hpp>
#include <boost/type_traits/integral_constant.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
# pragma once
#endif
#ifndef BOOST_DOXYGEN_INVOKED
# ifdef BOOST_HEAP_SANITYCHECKS
# define BOOST_HEAP_ASSERT BOOST_ASSERT
# else
# define BOOST_HEAP_ASSERT( expression )
# endif
#endif
namespace boost { namespace heap {
namespace detail {
template < typename node_pointer, bool store_parent_pointer >
struct parent_holder
{
parent_holder( void ) :
parent_( NULL )
{}
void set_parent( node_pointer parent )
{
BOOST_HEAP_ASSERT( static_cast< node_pointer >( this ) != parent );
parent_ = parent;
}
node_pointer get_parent( void ) const
{
return parent_;
}
node_pointer parent_;
};
template < typename node_pointer >
struct parent_holder< node_pointer, false >
{
void set_parent( node_pointer parent )
{}
node_pointer get_parent( void ) const
{
return NULL;
}
};
template < typename value_type, bool store_parent_pointer >
struct skew_heap_node : parent_holder< skew_heap_node< value_type, store_parent_pointer >*, store_parent_pointer >
{
typedef parent_holder< skew_heap_node< value_type, store_parent_pointer >*, store_parent_pointer > super_t;
typedef boost::array< skew_heap_node*, 2 > child_list_type;
typedef typename child_list_type::iterator child_iterator;
typedef typename child_list_type::const_iterator const_child_iterator;
skew_heap_node( value_type const& v ) :
value( v )
{
children.assign( 0 );
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
skew_heap_node( value_type&& v ) :
value( v )
{
children.assign( 0 );
}
#endif
template < typename Alloc >
skew_heap_node( skew_heap_node const& rhs, Alloc& allocator, skew_heap_node* parent ) :
value( rhs.value )
{
super_t::set_parent( parent );
node_cloner< skew_heap_node, skew_heap_node, Alloc > cloner( allocator );
clone_child( 0, rhs, cloner );
clone_child( 1, rhs, cloner );
}
template < typename Cloner >
void clone_child( int index, skew_heap_node const& rhs, Cloner& cloner )
{
if ( rhs.children[ index ] )
children[ index ] = cloner( *rhs.children[ index ], this );
else
children[ index ] = NULL;
}
template < typename Alloc >
void clear_subtree( Alloc& alloc )
{
node_disposer< skew_heap_node, skew_heap_node, Alloc > disposer( alloc );
dispose_child( children[ 0 ], disposer );
dispose_child( children[ 1 ], disposer );
}
template < typename Disposer >
void dispose_child( skew_heap_node* node, Disposer& disposer )
{
if ( node )
disposer( node );
}
std::size_t count_children( void ) const
{
size_t ret = 1;
if ( children[ 0 ] )
ret += children[ 0 ]->count_children();
if ( children[ 1 ] )
ret += children[ 1 ]->count_children();
return ret;
}
template < typename HeapBase >
bool is_heap( typename HeapBase::value_compare const& cmp ) const
{
for ( const_child_iterator it = children.begin(); it != children.end(); ++it ) {
const skew_heap_node* child = *it;
if ( child == NULL )
continue;
if ( store_parent_pointer )
BOOST_HEAP_ASSERT( child->get_parent() == this );
if ( cmp( HeapBase::get_value( value ), HeapBase::get_value( child->value ) )
|| !child->is_heap< HeapBase >( cmp ) )
return false;
}
return true;
}
value_type value;
boost::array< skew_heap_node*, 2 > children;
};
typedef parameter::parameters< boost::parameter::optional< tag::allocator >,
boost::parameter::optional< tag::compare >,
boost::parameter::optional< tag::stable >,
boost::parameter::optional< tag::store_parent_pointer >,
boost::parameter::optional< tag::stability_counter_type >,
boost::parameter::optional< tag::constant_time_size >,
boost::parameter::optional< tag::mutable_ > >
skew_heap_signature;
template < typename T, typename BoundArgs >
struct make_skew_heap_base
{
static const bool constant_time_size
= parameter::binding< BoundArgs, tag::constant_time_size, boost::true_type >::type::value;
typedef typename make_heap_base< T, BoundArgs, constant_time_size >::type base_type;
typedef typename make_heap_base< T, BoundArgs, constant_time_size >::allocator_argument allocator_argument;
typedef typename make_heap_base< T, BoundArgs, constant_time_size >::compare_argument compare_argument;
static const bool is_mutable = extract_mutable< BoundArgs >::value;
static const bool store_parent_pointer
= parameter::binding< BoundArgs, tag::store_parent_pointer, boost::false_type >::type::value || is_mutable;
typedef skew_heap_node< typename base_type::internal_type, store_parent_pointer > node_type;
typedef typename boost::allocator_rebind< allocator_argument, node_type >::type allocator_type;
struct type : base_type, allocator_type
{
type( compare_argument const& arg ) :
base_type( arg )
{}
type( allocator_type const& arg ) :
allocator_type( arg )
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
type( type&& rhs ) :
base_type( std::move( static_cast< base_type& >( rhs ) ) ),
allocator_type( std::move( static_cast< allocator_type& >( rhs ) ) )
{}
type( type const& rhs ) :
base_type( rhs ),
allocator_type( rhs )
{}
type& operator=( type&& rhs )
{
base_type::operator=( std::move( static_cast< base_type& >( rhs ) ) );
allocator_type::operator=( std::move( static_cast< allocator_type& >( rhs ) ) );
return *this;
}
type& operator=( type const& rhs )
{
base_type::operator=( static_cast< base_type const& >( rhs ) );
allocator_type::operator=( static_cast< allocator_type const& >( rhs ) );
return *this;
}
#endif
};
};
} /* namespace detail */
/**
* \class skew_heap
* \brief skew heap
*
*
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
* - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
* - \c boost::heap::store_parent_pointer<>, defaults to \c store_parent_pointer<true>. Maintaining a parent pointer
* adds some maintenance and size overhead, but iterating a heap is more efficient.
* - \c boost::heap::mutable<>, defaults to \c mutable<false>.
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template < class T, class... Options >
#else
template < typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_,
class A4 = boost::parameter::void_,
class A5 = boost::parameter::void_,
class A6 = boost::parameter::void_ >
#endif
class skew_heap :
private detail::make_skew_heap_base< T, typename detail::skew_heap_signature::bind< A0, A1, A2, A3, A4, A5, A6 >::type >::type
{
typedef typename detail::skew_heap_signature::bind< A0, A1, A2, A3, A4, A5, A6 >::type bound_args;
typedef detail::make_skew_heap_base< T, bound_args > base_maker;
typedef typename base_maker::type super_t;
typedef typename super_t::internal_type internal_type;
typedef typename super_t::size_holder_type size_holder;
typedef typename base_maker::allocator_argument allocator_argument;
static const bool store_parent_pointer = base_maker::store_parent_pointer;
template < typename Heap1, typename Heap2 >
friend struct heap_merge_emulate;
struct implementation_defined : detail::extract_allocator_types< typename base_maker::allocator_argument >
{
typedef T value_type;
typedef typename base_maker::compare_argument value_compare;
typedef typename base_maker::allocator_type allocator_type;
typedef typename base_maker::node_type node;
typedef typename boost::allocator_pointer< allocator_type >::type node_pointer;
typedef typename boost::allocator_const_pointer< allocator_type >::type const_node_pointer;
typedef detail::value_extractor< value_type, internal_type, super_t > value_extractor;
typedef boost::array< node_pointer, 2 > child_list_type;
typedef typename child_list_type::iterator child_list_iterator;
typedef typename boost::conditional<
false,
detail::recursive_tree_iterator< node,
child_list_iterator,
const value_type,
value_extractor,
detail::list_iterator_converter< node, child_list_type > >,
detail::tree_iterator< node,
const value_type,
allocator_type,
value_extractor,
detail::dereferencer< node >,
true,
false,
value_compare > >::type iterator;
typedef iterator const_iterator;
typedef detail::
tree_iterator< node, const value_type, allocator_type, value_extractor, detail::dereferencer< node >, true, true, value_compare >
ordered_iterator;
typedef typename detail::extract_allocator_types< typename base_maker::allocator_argument >::reference reference;
typedef detail::node_handle< node_pointer, super_t, reference > handle_type;
};
typedef typename implementation_defined::value_extractor value_extractor;
typedef typename implementation_defined::node node;
typedef typename implementation_defined::node_pointer node_pointer;
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/// \copydoc boost::heap::priority_queue::iterator
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::ordered_iterator ordered_iterator;
static const bool constant_time_size = super_t::constant_time_size;
static const bool has_ordered_iterators = true;
static const bool is_mergable = true;
static const bool is_stable = detail::extract_stable< bound_args >::value;
static const bool has_reserve = false;
static const bool is_mutable = detail::extract_mutable< bound_args >::value;
typedef
typename boost::conditional< is_mutable, typename implementation_defined::handle_type, void* >::type handle_type;
/// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
explicit skew_heap( value_compare const& cmp = value_compare() ) :
super_t( cmp ),
root( NULL )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(allocator_type const &)
explicit skew_heap( allocator_type const& alloc ) :
super_t( alloc ),
root( 0 )
{}
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
skew_heap( skew_heap const& rhs ) :
super_t( rhs ),
root( 0 )
{
if ( rhs.empty() )
return;
clone_tree( rhs );
size_holder::set_size( rhs.get_size() );
}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue const & rhs)
skew_heap& operator=( skew_heap const& rhs )
{
clear();
size_holder::set_size( rhs.get_size() );
static_cast< super_t& >( *this ) = rhs;
clone_tree( rhs );
return *this;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
skew_heap( skew_heap&& rhs ) :
super_t( std::move( rhs ) ),
root( rhs.root )
{
rhs.root = NULL;
}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
skew_heap& operator=( skew_heap&& rhs )
{
super_t::operator=( std::move( rhs ) );
root = rhs.root;
rhs.root = NULL;
return *this;
}
#endif
~skew_heap( void )
{
clear();
}
/**
* \b Effects: Adds a new element to the priority queue.
*
* \b Complexity: Logarithmic (amortized).
*
* */
typename boost::conditional< is_mutable, handle_type, void >::type push( value_type const& v )
{
typedef typename boost::conditional< is_mutable, push_handle, push_void >::type push_helper;
return push_helper::push( this, v );
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES ) && !defined( BOOST_NO_CXX11_VARIADIC_TEMPLATES )
/**
* \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place.
*
* \b Complexity: Logarithmic (amortized).
*
* */
template < typename... Args >
typename boost::conditional< is_mutable, handle_type, void >::type emplace( Args&&... args )
{
typedef typename boost::conditional< is_mutable, push_handle, push_void >::type push_helper;
return push_helper::emplace( this, std::forward< Args >( args )... );
}
#endif
/// \copydoc boost::heap::priority_queue::empty
bool empty( void ) const
{
return root == NULL;
}
/// \copydoc boost::heap::binomial_heap::size
size_type size( void ) const
{
if ( constant_time_size )
return size_holder::get_size();
if ( root == NULL )
return 0;
else
return root->count_children();
}
/// \copydoc boost::heap::priority_queue::max_size
size_type max_size( void ) const
{
const allocator_type& alloc = *this;
return boost::allocator_max_size( alloc );
}
/// \copydoc boost::heap::priority_queue::clear
void clear( void )
{
if ( empty() )
return;
root->template clear_subtree< allocator_type >( *this );
root->~node();
allocator_type& alloc = *this;
alloc.deallocate( root, 1 );
root = NULL;
size_holder::set_size( 0 );
}
/// \copydoc boost::heap::priority_queue::get_allocator
allocator_type get_allocator( void ) const
{
return *this;
}
/// \copydoc boost::heap::priority_queue::swap
void swap( skew_heap& rhs )
{
super_t::swap( rhs );
std::swap( root, rhs.root );
}
/// \copydoc boost::heap::priority_queue::top
const_reference top( void ) const
{
BOOST_ASSERT( !empty() );
return super_t::get_value( root->value );
}
/**
* \b Effects: Removes the top element from the priority queue.
*
* \b Complexity: Logarithmic (amortized).
*
* */
void pop( void )
{
BOOST_ASSERT( !empty() );
node_pointer top = root;
root = merge_children( root );
size_holder::decrement();
if ( root )
BOOST_HEAP_ASSERT( root->get_parent() == NULL );
else
BOOST_HEAP_ASSERT( size_holder::get_size() == 0 );
top->~node();
allocator_type& alloc = *this;
alloc.deallocate( top, 1 );
sanity_check();
}
/// \copydoc boost::heap::priority_queue::begin
iterator begin( void ) const
{
return iterator( root, super_t::value_comp() );
}
/// \copydoc boost::heap::priority_queue::end
iterator end( void ) const
{
return iterator();
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_begin( void ) const
{
return ordered_iterator( root, super_t::value_comp() );
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_end( void ) const
{
return ordered_iterator( 0, super_t::value_comp() );
}
/**
* \b Effects: Merge all elements from rhs into this
*
* \b Complexity: Logarithmic (amortized).
*
* */
void merge( skew_heap& rhs )
{
if ( rhs.empty() )
return;
merge_node( rhs.root );
size_holder::add( rhs.get_size() );
rhs.set_size( 0 );
rhs.root = NULL;
sanity_check();
super_t::set_stability_count( ( std::max )( super_t::get_stability_count(), rhs.get_stability_count() ) );
rhs.set_stability_count( 0 );
}
/// \copydoc boost::heap::priority_queue::value_comp
value_compare const& value_comp( void ) const
{
return super_t::value_comp();
}
/// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
template < typename HeapType >
bool operator<( HeapType const& rhs ) const
{
return detail::heap_compare( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
template < typename HeapType >
bool operator>( HeapType const& rhs ) const
{
return detail::heap_compare( rhs, *this );
}
/// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
template < typename HeapType >
bool operator>=( HeapType const& rhs ) const
{
return !operator<( rhs );
}
/// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
template < typename HeapType >
bool operator<=( HeapType const& rhs ) const
{
return !operator>( rhs );
}
/// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
template < typename HeapType >
bool operator==( HeapType const& rhs ) const
{
return detail::heap_equality( *this, rhs );
}
/// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
template < typename HeapType >
bool operator!=( HeapType const& rhs ) const
{
return !( *this == rhs );
}
/// \copydoc boost::heap::d_ary_heap::s_handle_from_iterator
static handle_type s_handle_from_iterator( iterator const& it )
{
node* ptr = const_cast< node* >( it.get_node() );
return handle_type( ptr );
}
/**
* \b Effects: Removes the element handled by \c handle from the priority_queue.
*
* \b Complexity: Logarithmic (amortized).
* */
void erase( handle_type object )
{
BOOST_STATIC_ASSERT( is_mutable );
node_pointer this_node = object.node_;
unlink_node( this_node );
size_holder::decrement();
sanity_check();
this_node->~node();
allocator_type& alloc = *this;
alloc.deallocate( this_node, 1 );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic (amortized).
*
* */
void update( handle_type handle, const_reference v )
{
BOOST_STATIC_ASSERT( is_mutable );
if ( super_t::operator()( super_t::get_value( handle.node_->value ), v ) )
increase( handle, v );
else
decrease( handle, v );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic (amortized).
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void update( handle_type handle )
{
BOOST_STATIC_ASSERT( is_mutable );
node_pointer this_node = handle.node_;
if ( this_node->get_parent() ) {
if ( super_t::operator()( super_t::get_value( this_node->get_parent()->value ),
super_t::get_value( this_node->value ) ) )
increase( handle );
else
decrease( handle );
} else
decrease( handle );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic (amortized).
*
* \b Note: The new value is expected to be greater than the current one
* */
void increase( handle_type handle, const_reference v )
{
BOOST_STATIC_ASSERT( is_mutable );
handle.node_->value = super_t::make_node( v );
increase( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic (amortized).
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void increase( handle_type handle )
{
BOOST_STATIC_ASSERT( is_mutable );
node_pointer this_node = handle.node_;
if ( this_node == root )
return;
node_pointer parent = this_node->get_parent();
if ( this_node == parent->children[ 0 ] )
parent->children[ 0 ] = NULL;
else
parent->children[ 1 ] = NULL;
this_node->set_parent( NULL );
merge_node( this_node );
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic (amortized).
*
* \b Note: The new value is expected to be less than the current one
* */
void decrease( handle_type handle, const_reference v )
{
BOOST_STATIC_ASSERT( is_mutable );
handle.node_->value = super_t::make_node( v );
decrease( handle );
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic (amortized).
*
* \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has
* been updated, the behavior of the data structure is undefined!
* */
void decrease( handle_type handle )
{
BOOST_STATIC_ASSERT( is_mutable );
node_pointer this_node = handle.node_;
unlink_node( this_node );
this_node->children.assign( 0 );
this_node->set_parent( NULL );
merge_node( this_node );
}
private:
#if !defined( BOOST_DOXYGEN_INVOKED )
struct push_void
{
static void push( skew_heap* self, const_reference v )
{
self->push_internal( v );
}
# if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES ) && !defined( BOOST_NO_CXX11_VARIADIC_TEMPLATES )
template < class... Args >
static void emplace( skew_heap* self, Args&&... args )
{
self->emplace_internal( std::forward< Args >( args )... );
}
# endif
};
struct push_handle
{
static handle_type push( skew_heap* self, const_reference v )
{
return handle_type( self->push_internal( v ) );
}
# if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES ) && !defined( BOOST_NO_CXX11_VARIADIC_TEMPLATES )
template < class... Args >
static handle_type emplace( skew_heap* self, Args&&... args )
{
return handle_type( self->emplace_internal( std::forward< Args >( args )... ) );
}
# endif
};
node_pointer push_internal( const_reference v )
{
size_holder::increment();
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node( super_t::make_node( v ) );
merge_node( n );
return n;
}
# if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES ) && !defined( BOOST_NO_CXX11_VARIADIC_TEMPLATES )
template < class... Args >
node_pointer emplace_internal( Args&&... args )
{
size_holder::increment();
allocator_type& alloc = *this;
node_pointer n = alloc.allocate( 1 );
new ( n ) node( super_t::make_node( std::forward< Args >( args )... ) );
merge_node( n );
return n;
}
# endif
void unlink_node( node_pointer node )
{
node_pointer parent = node->get_parent();
node_pointer merged_children = merge_children( node );
if ( parent ) {
if ( node == parent->children[ 0 ] )
parent->children[ 0 ] = merged_children;
else
parent->children[ 1 ] = merged_children;
} else
root = merged_children;
}
void clone_tree( skew_heap const& rhs )
{
BOOST_HEAP_ASSERT( root == NULL );
if ( rhs.empty() )
return;
allocator_type& alloc = *this;
root = alloc.allocate( 1 );
new ( root ) node( *rhs.root, alloc, NULL );
}
void merge_node( node_pointer other )
{
BOOST_HEAP_ASSERT( other );
if ( root != NULL )
root = merge_nodes( root, other, NULL );
else
root = other;
}
node_pointer merge_nodes( node_pointer node1, node_pointer node2, node_pointer new_parent )
{
if ( node1 == NULL ) {
if ( node2 )
node2->set_parent( new_parent );
return node2;
}
if ( node2 == NULL ) {
node1->set_parent( new_parent );
return node1;
}
node_pointer merged = merge_nodes_recursive( node1, node2, new_parent );
return merged;
}
node_pointer merge_children( node_pointer node )
{
node_pointer parent = node->get_parent();
node_pointer merged_children = merge_nodes( node->children[ 0 ], node->children[ 1 ], parent );
return merged_children;
}
node_pointer merge_nodes_recursive( node_pointer node1, node_pointer node2, node_pointer new_parent )
{
if ( super_t::operator()( node1->value, node2->value ) )
std::swap( node1, node2 );
node* parent = node1;
node* child = node2;
if ( parent->children[ 1 ] ) {
node* merged = merge_nodes( parent->children[ 1 ], child, parent );
parent->children[ 1 ] = merged;
merged->set_parent( parent );
} else {
parent->children[ 1 ] = child;
child->set_parent( parent );
}
std::swap( parent->children[ 0 ], parent->children[ 1 ] );
parent->set_parent( new_parent );
return parent;
}
void sanity_check( void )
{
# ifdef BOOST_HEAP_SANITYCHECKS
if ( root )
BOOST_HEAP_ASSERT( root->template is_heap< super_t >( super_t::value_comp() ) );
if ( constant_time_size ) {
size_type stored_size = size_holder::get_size();
size_type counted_size;
if ( root == NULL )
counted_size = 0;
else
counted_size = root->count_children();
BOOST_HEAP_ASSERT( counted_size == stored_size );
}
# endif
}
node_pointer root;
#endif
};
}} // namespace boost::heap
#undef BOOST_HEAP_ASSERT
#endif /* BOOST_HEAP_SKEW_HEAP_HPP */